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PREFACE
Effective Date: 31 March 2004

This document has been issued to make available to software safety practitioners a guidebook
for assessing software systems for software’s contribution to safety and techniques for
analyzing and applying appropriate safety techniques and methods to software. Software
developers and software safety engineers are the primary focus; however, software assurance
(SA) engineers, project managers, system engineers, and system safety engineers will also
find this guidebook useful.

The document:

Provides an overview of general software safety and good software engineering
practices which contribute to software system safety.

Provides the means to scope and tailor the software safety and software engineering
activities to obtain the most cost effective, best quality, and safest products.

Provides analyses, methods and guidance which can be applied during each phase of
the software life cycle. Multiple checklists and examples are provided as well as
specific instructions for applying FMEA/CIL and FTA to software.

Includes development approaches, safety analyses, and testing methodologies that lead
to improved safety in the software product.

Procuring NASA Enterprise Programs or Centers shall review this document for applicability
to NASA contracts as well as for applicability to its internal activities.

Questions concerning the application of this publication to specific procurements or requests
should be referred to the NASA Enterprise Program or Center.

This guidebook cancels NASA-GB-1740.13-96, NASA Guidebook for Safety Critical
Software Analysis and Development.

/s/

Bryan O’Connor
Associate Administrator for
Safety and Mission Assurance
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Foreword

This guidebook was created to provide specific information and guidance on the process of
creating and assuring safe software. In our modern world, software controls much of the
hardware (equipment, electronics, and instruments) around us. Sometimes hardware failure
can lead to a loss of human life. When software controls, operates, or interacts with such
hardware, software safety becomes a vital concern

The audience for this guidebook is diverse. Software developers and software safety
engineers are the primary focus. Software assurance (QA) engineers, project managers,
system engineers, and system safety engineers will also find this guidebook useful. Section
1.5 of the Introduction provides guidance on sections of particular interest to the various
disciplines.

This guidebook is meant to be more than just a collection of development techniques and
analyses. The goal is to open the reader to new ways of thinking about software from a safety
perspective. This guidebook points out things to look for (and look out for) in the
development of safety-critical software. The guidebook includes development approaches,
safety analyses, and testing methodologies that lead to improved safety in the software
product.

While the focus of this guidebook is on the development of software for safety-critical
systems, much of the information and guidance is also appropriate to the creation of mission-
critical software.
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Chapter 1 Introduction

This NASA Software Safety Guidebook was prepared by the NASA Glenn Research Center,
Safety and Assurance Directorate, under a Center Software Initiative Proposal (CSIP) task for
the National Aeronautics and Space Administration.

NASA-STD-8719.13A, “NASA Software Safety Standard,” [1] prepared by NASA
Headquarters addresses the “who, what, when and why” of software safety analyses. This
Software Safety Guidebook addresses the “how to.”

Section 1.5 provides a roadmap to using this guidebook. The roadmap describes the
information in each chapter and shows software developers, project managers, software
assurance personnel, system engineers, and safety engineers which sections are relevant for
their disciplines.

1.1 Scope

The focus of this document is on analysis, development, and assurance of safety-critical
software, including firmware (e.g. software residing in non-volatile memory, such as ROM,
EPROM, EEPROM, or flash memory) and programmable logic. This document also
discusses issues with contractor-developed software. It provides guidance on how to address
creation and assurance of safety-critical software within the overall software development,
management, risk management, and assurance activities.

Techniques and analyses are described in varying levels of detail throughout the guidebook,
depending on the amount of information available. For techniques or analyses are that are
new, the guidebook attempts to give a flavor of the technique or procedure and provides
sources for more information. Opinions differ widely concerning the validity of some of the
various techniques, and this guidebook attempts to present these opinions without prejudging
their validity. In most cases, there are few or no metrics as of yet, to quantitatively evaluate
or compare the techniques. This guidebook addresses the value added versus cost of each
technique with respect to the overall software development and assurance goals. Without
strong metrics, such evaluations are somewhat subjective and should not be taken as the
definitive answer. Each technique or analysis should be considered in the context of the
specific project.

This guidebook is meant to be more than just a collection of development techniques and
analyses. The goal is to encourage the reader to think about software with “an eye for safety.”
Some familiarity with the NASA methodologies for system safety analysis and software
development will assist in following this guidebook, though no experience with either is
assumed or required. Acronyms and definitions of terminology used in this guidebook are
contained in Appendix B.

1.2 Purpose

The purpose of this guidebook is to aid organizations involved in the development and
assurance of safety-critical software. Software developers will find information on the
creation of safer software, as well as introduction to the NASA process for system (and
software) safety. Software safety personnel are given an introduction to the variety of
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techniques and analyses available for assuring that the software is safer, as well as
information on good development practices. Project managers, system safety, software
assurance engineers, and systems engineers may also find this guidebook useful. Some
knowledge of software development processes is helpful in understanding the material
presented in this guidebook.

This guidebook concentrates on software development and acquisition and the associated
tasks and analyses. While the focus is on the development of software for safety-critical
systems, much of the information and guidance is also appropriate to the creation of mission-
critical software. Guidance on the acquisition of software, either commercial off-the-shelf or
created under contract, is given in Chapter 12.

1.3  Acknowledgments

Much of the material presented in this Guidebook has been based directly or indirectly on a
variety of sources (NASA, government agencies, technical literature sources), as well as
containing original material previously undocumented. All the sources are too numerous to
list here, but are appropriately referenced throughout.

A special acknowledgment is owed to engineers of the NASA/Caltech Jet Propulsion
Laboratory of Pasadena, California, whose inputs and suggestions have been used verbatim or
slightly modified in several sections of this Guidebook.

We also thank:

e The Software Productivity Consortium for permission to reproduce “The Frameworks
Quagmire” diagram.

e Rick Hower for permission to use information from his website on “Software QA and
Testing Frequently-Asked-Questions”, http://www.softwareqatest.com/.

e Denis Howe for permission to quote from ”The Free On-Line Dictionary of
Computing”, http://foldoc.doc.ic.ac.uk/foldoc/index.html

« Philip J. Koopman for permission to quote from “A Brief Introduction to Forth.”

e Paul E. Bennett for permission to reproduce his “Design for Safety” checklist.

Our gratitude goes to the many NASA engineers and contractors who reviewed drafts of the
guidebook and provided input and advise as well as encouragement.

1.4  Associated Documents

Documents detailing software safety standards, software development standards, and
guidebooks are listed in Appendix A.2: Information. Included are NASA standards for
software, as well as IEEE and military standards.
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1.5 Roadmap of this Guidebook

This guidebook provides information for several diverse disciplines: software development,
system and software safety, software assurance, project management, and systems
engineering. Each of these disciplines has an associated graphic symbol, used throughout the
document to assist the reader in locating relevant information. When an entire section is
appropriate for a specific discipline, the symbol will be placed after the section title. When a
paragraph within a section is applicable, the symbol will be placed to the left of the paragraph.

In addition, tailoring information will be indicated by this symbol: ﬁ
R

Section 1.5.1 provides the symbols that are associated with each discipline, along with a brief
description of the discipline. Section 1.5.2 provides a brief description of the contents of each

Chapter in this guidebook.

1.5.1 Disciplines and Symbols

Discipline/Symbol Responsibilities
Software The task of developing safe software falls squarely on the shoulders
Development of the software developer (also referred to as the software engineer),

who creates the “code” that must be safe. Almost all sections of this
guidebook are relevant to the software development discipline.

Software Safety
(including System
Safety)

The software safety tasks may be performed system safety
personnel, software assurance personnel, or by a separate software
safety engineer. The goal is to assure that the final software, when
integrated into the system, is safe. This goal is accomplished
through education of project team members, analysis of the software
products, test verification, and other techniques. Almost all sections
of this guidebook are relevant to the software safety discipline.

Software assurance personnel make sure that the software produced
meets the applicable quality standards. Standards include both
process (how the software was developed) and product (how good is
the actual software). The software assurance engineer may perform
some of the safety analyses, if that is negotiated by the project.

Project and/or
Software Management

%

Developing a safe system requires informed involvement of the
project manager. A culture where good practices are rewarded and
“systems thinking” is encouraged helps in the creation of a safe
system. Many of the topics in this guidebook are technical and
detailed. The project manager is pointed to sections that are more
general in nature. In addition, sections that point out potential
problems, difficulties, or concerns are also flagged for the project
manager.

Systems Engineering

A systems engineer may wish to read this guidebook for a better
understanding of how software fits into the entire system.

NASA-GB-8719.13
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1.5.2 Chapter Description

Chapter 2 describes the concepts of system safety and the role of software in safety-critical
systems. The chapter provides software developers and others with an understanding of the
system safety process. System safety engineers may wish to review this chapter for
information on the various types of software that should be considered in a system safety
context.

Chapter 3 gives a more in-depth look at software safety. It provides guidance on how to
scope the safety effort and tailor the processes and analyses to the required level of effort.

Chapter 4 provides an overview of the software development process. System safety
engineers and project managers unfamiliar with the software development process will find
this chapter useful. Software developers, software assurance engineers, and software safety
engineers should review the chapter to make sure they are familiar with all the concepts.
Other discipline experts may wish to skim the chapter, or use the table of contents to locate
specific subsections of interest.

Chapters 5 through 10 describe development activities and assurance analyses for each
lifecycle phase. While this guidebook uses the waterfall lifecycle phases (Concept,
Requirements, Design, Implementation, Test, and Operations) to describe associated software
safety activities, this guidebook does not imply a strict adherence to that lifecycle. The ideas
of concept (planning the project), requirements (deciding what to build), design (deciding
how to build it), implementation (actually building the software/system), test (making sure it
works) and operations (using what was built) apply to all lifecycles. Maintenance of software
is viewed as a reduced scope of all these phases with good configuration management of
problems and upgrades as well as appropriate root cause analyses and corrective action when
required. Retirement of safety critical software is a phase not often thought of but perhaps
should be.

Chapter 5 focuses on activities performed during the concept phase of the project. Activities
and analyses for both development and safety are discussed.

Chapter 6 focuses on activities performed during the requirements phase of the project.
Activities and analyses for both development and safety are discussed. Requirements
management, determination of critical requirements, and other very important concepts are
included in this chapter.

Chapter 7 focuses on activities performed during the design phase of the project. Activities
and analyses for both development and safety are discussed.

Chapter 8 focuses on activities performed during the implementation phase of the project.
Activities and analyses for both development and safety are discussed.

Chapter 9 focuses on activities performed during the testing phase of the project. Activities
and analyses for both development and safety are discussed.

Chapter 10 focuses on activities performed during the operations and maintenance phase of
the project. Activities and analyses for both development and safety are discussed.

NASA-GB-8719.13 15



Chapter 11 is a collection of specific problem areas. Selection of programming language,
operating system, and development tools is one such area. Innovative technologies, such as
distributed computing, autonomous systems, and embedded web, are also included. Much of
this chapter will be of interest to software developers. Safety and software assurance
engineers may wish to skim this chapter to obtain a better understanding of software issues.

Chapter 12 discusses the acquisition of software. Both COTS/GOTS (commercial and
government off-the-shelf) software and software created under contract are considered.

Chapter 13 provides a look ahead to some evolving areas of software safety.
Appendix A contains reference and resource information.
Appendix B provides definitions of commonly used terms and a list of acronym:s.

Appendices C through G provide details on five analysis techniques (Software Fault Tree
Analysis, Software Failure Modes and Effects Analysis, Requirements State Machine,
Preliminary Hazard Analysis, and Reliability Modeling).

Appendix H contains a collection of checklists.
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Chapter 2 Software and System Safety e

Safety is not the sole responsibility of the System Safety engineer. Creating a safe system is a
team effort and safety is everyone’s responsibility. Software is a vital part of most systems. It
controls hardware and provides mission-critical data. Software must be safe.

But how do you know if any of your software is “safe” or “unsafe”? What are the hazards that
software may contribute to, or that software may control? Why should you even care about
software safety?

When a device or system can lead to injury, death, the destruction or loss of vital equipment, or
damage to the environment, system safety is paramount. The system safety discipline focuses on
“hazards” and the prevention of hazardous situations. Hardware or software that can lead to a
hazard, or is used to control or mitigate a hazard, comes under that category. Software has
become a vital and integral part of most systems. Software can respond quickly to potential
problems, provide more functionality than equivalent hardware, and can even be changed in
flight! The promise of software, however, must be tempered with the consequences of its failure.
The software safety discipline expands beyond the immediate software used in hazard control or
avoidance to include all software that can impact hazardous software or hardware. All such
software is “safety-critical”.

Project managers, systems engineers, software engineers, software assurance personnel, and
system safety personnel all play a part in creating a safe system.

i 2 Aal)E
2.1 Hazardous and Safety-critical Software i

“Software does not fail — it just does not perform as intended.” Dr. Nancy Leveson, MIT

2.1.1 Whatis a Hazard?

A hazard is the presence of a potential risk situation that can result in or contribute to a mishap.
Every hazard has at least one cause, which in turn can lead to a number of effects (e.g., damage,
illness, failure).

A hazard cause may be a defect in hardware or software, a human operator error, or an
unexpected input or event which results in a hazard. A hazard control is a method for preventing
the hazard, reducing the likelihood of the hazard occurring, or the reduction of the impact of that
hazard . Hazard controls use hardware (e.g. pressure relief valve), software (e.g. detection of
stuck valve and automatic response to open secondary valve), operator procedures, or a
combination of methods to avert the hazard.

For every hazard cause there must be at least one control method, usually a design feature
(hardware and/or software) or a procedural step. Examples of hazard causes and controls are
given in Table 2-1 Hazard Causes and Controls - Examples. Each hazard control will require
verification, which may be via test, analysis, inspection, or demonstration. For NASA, critical
hazard causes require two independent controls. Catastrophic hazard causes require three
independent controls.

Software can be used to detect and control hazards, but software failures can also contribute to
the occurrence of hazards. Some software hazard causes can be addressed with hardware hazard
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controls, although this is becoming less and less practical as software becomes more complex.
For example, a hardwired gate array could be preset to look for certain predetermined hazardous
words (forbidden or unplanned) transmitted by a computer, and shut down the computer upon
detecting such a word. In practice, this is nearly impossible today because thousands of words
and commands are usually sent on standard buses.

Table 2-1 Hazard Causes and Controls - Examples

Cause Control Example of Control Action

Hardware | Hardware | Pressure vessel with pressure relief valve.

Hardware | Software | Fault detection and safing function; or arm/fire checks which activate
or prevent hazardous conditions.

Hardware | Operator | Operator opens switch to remove power from failed unit.

Software | Hardware | Hardwired timer or discrete hardware logic to screen invalid
commands or data. Sensor directly triggering a safety switch to
override a software control system. Hard stops for a robotic arm.

Software Software | Two independent processors, one checking the other and intervening
if a fault is detected. Emulating expected performance and detecting
deviations.

Software | Operator Operator sees control parameter violation on display and terminates
process.

Operator Hardware | Three electrical switches in series in a firing circuit to tolerate two
operator errors.

Operator | Software | Software validation of operator-initiated hazardous command.
Software prevents operation in unsafe mode.

Operator | Operator | Two crew members, one commanding and the other monitoring.

2.1.2 How Can Software be Hazardous?

Software, by itself, cannot injure you. But software does not exist by itself. It operates in an
electronic system (computer) and often controls other hardware. Software is hazardous if it can
directly lead to a hazard or is used to control a hazard.

= Hazardous software includes all software that is a hazard cause.
= |s a hazard control.
* Provides information upon which safety-critical decisions are made.

= s used as a means of failure/fault detection.

2.1.3 What is Safety-Critical Software?

Safety-critical software includes hazardous software (which can directly contribute to, or control
a hazard). It also includes all software that can influence that hazardous software.
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Software is considered safety-critical if it controls or monitors hazardous or safety-critical
hardware or software. Such software usually resides on remote, embedded, and/or real-time
systems. For example, software that controls an airlock or operates a high-powered laser is
hazardous and safety-critical. Software that monitors a fire-detection system is also safety-
critical.

Software that provides information required for a safety-related decision falls into the safety-
critical category. If a human must shut down a piece of hardware when the temperature goes
over a threshold, the software that reads the temperature and displays it for the human operator is
safety-critical. All the software along the chain, from reading the hardware temperature sensor,
converting the value to appropriate units, to displaying the data on the screen are safety-critical.

Software that performs off-line processes may be considered safety-critical as well. For
example, software that verifies a software or hardware hazard control must operate correctly.
Failure of the test software may allow a potential hazard to be missed. In addition, software
used in analyses that verify hazard controls or safety-critical software must also function
correctly, to prevent inadvertently overlooking a hazard. Modeling and simulation programs are
two types of off-line software that may be safety-critical. Very often we rely on our software
models and simulators to predict how part or all of a system may react. The system may be
modeled to represent stressed or “normal” operations. Based on those modeled reactions,
changes may be made in the design of the hardware, software, and/or operator procedures. If the
system model fails to properly depict safety critical situations, design errors may go undetected.

If the software resides with safety-critical software on the same physical platform, it
must also be considered safety-critical unless adequately partitioned from the safety-

& critical portion. Non-safety-critical software (such as a data massaging algorithm) could
lock up the computer or write over critical memory areas when sharing a CPU or any
routines with the safety-critical software. Techniques such as firewalls and partitioning
can be used to ensure that the non-safety-critical software does not interrupt or disrupt the
safety-critical functions and operations.

In summary, software is safety-critical if it performs any of the following:
o Controls hazardous or safety-critical hardware or software.
% o Monitors safety-critical hardware or software as part of a hazard control.
o Provides information upon which a safety-related decision is made.
& o Performs analysis that impacts automatic or manual hazardous operations.
o Verifies hardware or software hazard controls.

o Can prevent safety-critical hardware or software from functioning properly.

2.1.4 How Does Software Control Hazards?

In the past, hardware controls were the primary method used to control (i.e. prevent) hardware
hazards. Today, because of the complexity of systems, it may not be feasible to have only
hardware controls, or to have any hardware controls at all. Now, many hardware hazard causes
are addressed with software hazard controls. Often this is because of the quick reaction time
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needed to respond to a failure or the complexity of detecting possible faults and errors before
they become failures.

Some examples of software controls are:

e Monitor hazardous hardware (via instrumentation) and execute a corrective action if
deviations are outside of established limits. For example, turn off a power supply (or
reduce power) when it is in an over-voltage condition.

e Monitor potential hazardous conditions (e.g. temperature) and warn operators. For
example, sound an alarm when the pressure goes above a predefined threshold.

¢ Inhibit certain activities in operational states that could lead to a hazardous event, such as
preventing a chamber door from being opened during experiment sequences while toxic
gases are present.

2.1.5 Relationship Between Software and Hardware Controls

NASA relies primarily on hardware controls, in conjunction with software controls, to prevent
hazards. Hardware controls are well known and understood, and have a better “track record”
than software. However, software is often the first line of defense, monitoring for unsafe
conditions and responding appropriately. The software may perform an automatic safing
operation, or provide a message to a human operator, for example. The hardware control is the
backup to the software control. If the software fails to detect the problem or does not respond
properly to alleviate the condition, then the hardware control is triggered.

Using a pressurized system as an example, the software monitors a pressure sensor. If the
pressure goes over some threshold, the software would respond by stopping the flow of gas into
the system by closing a valve. If the software failed, either by not detecting the over-
pressurization or by not closing the valve, then the hardware pressure relief valve would be
triggered once the pressure reached a critical level.

While software controls can be, and are, used to prevent hazards, they must be
implemented with care. Special attention needs to be placed on this software during the

% development process. When there are no hardware controls to back up the software, the
software must undergo even more rigorous development and testing. This guidebook
provides guidance for the development, analysis, and testing of all such software. The
amount of effort to develop and assure safety-critical software will be determined by the
degree of criticality of the software, as described in Chapter 3.

2.1.6 Caveats with Software Hazard Controls

When software is used to control a hazard, some care must be made to isolate it from the hazard
cause it is controlling. For a hazard cause outside of the computer-processing arena (e.g. stuck
valve), the hazard control software can be co-located with the regular operations software.
Partitioning of the hazard control software is recommended. Otherwise, all of the software must
be treated as safety-critical because of potential “contamination” from the non-critical code.

If the hazard cause is erroneous software, then the hazard control software can reside on a
separate computer processor from the one where the hazard/anomaly might occur. Another
option would be to implement a firewall or similar system to isolate the hazard control software,
even though it shares the same processor as that where the potential hazard cause may occur.
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If the hazard cause is a processor failure, then the hazard control must be located on another
processor, since the failure would most likely affect its own software’s ability to react to that
CPU hardware failure. This is a challenging aspect of software safety, because multiprocessor
architectures are costly and can add significant complexity (which in itself can increase the
possibility of software failures). A single computer is inherently zero failure tolerant. Many
system designers believe that computers fail safe, whereas NASA experience has shown that
computers may exhibit hazardous failure modes. Another fallacy is to believe that upon any
fault or failure detection, the safest action is always to shut down a program or computer
automatically. Instead, this action could cause a more serious hazardous condition. Consider
shutting down a computer which is your only means of monitoring, detecting, or controlling
many potential hazards due to one program or module failure. Self detection and isolation of the
problem area may be much less hazardous, allowing the problem to be corrected or mitigated.

2.1.7 Whatis Fault or Failure Tolerance?

A fault is any change in the state of an item which is considered anomalous and may warrant
some type of corrective action. A failure is the inability of a system or component to perform its
required functions within specified performance requirements.

= A fault may or may not lead to a failure.
= One or more faults can become a failure.
= All failures are the result of one or more faults.

Fault tolerance is the ability of the system to withstand an unwanted event and maintain a safe
and operational condition. It is determined by the number of faults that can occur in a system or
subsystem without the occurrence of a failure. Fault and failure tolerance are often used
synonymously, though they are different.

Fault tolerance usually is concerned with detecting and recovering from small defects

& before they can become larger failures. Error detection and handling is one example of

fault-tolerant coding practices. Failure tolerance is concerned with maintaining the

system in a safe state despite a failure within the system. Creating failure tolerance

w% requires a system-wide approach to the software and hardware design, so that a failure

does not lead to an unsafe state. Depending on the failure and the failure tolerance
mechanism, the system may operate normally or with reduced functionality.

System failure or fault tolerance is often described as the number of failures or faults the system
can handle and continue functioning at some level. A one failure tolerant system can continue
functioning after a single failure has occurred. A second failure would lead to a failed system or
the system in an unsafe state. Likewise, a two failure tolerant system requires three failures
before the system becomes unsafe or fails to continue normal operations.

While a failed system is not good, it may still be safe. Failure tolerance becomes a safety issue
when the failures occur in hazard controls. To prevent a hazard, at least one control must be
functioning at all times. NASA, based on extensive experience with spacecraft flight operations,
has established levels of failure tolerance based on the hazard severity level necessary to achieve
acceptable levels of risk.

e Catastrophic Hazards must be able to tolerate two hazard control failures.

e Critical Hazards must be able to tolerate a single hazard control failure.
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2.2 The System Safety Program

A System Safety Program Plan is a prerequisite to performing development or analysis of safety-
critical software. The System Safety Program Plan outlines the organizational structure,
interfaces, and the required criteria for analysis, reporting, evaluation, and data retention to
provide a safe product. This safety plan describes forms of analysis and provides a schedule for
performing a series of these system and subsystem level analyses throughout the development
cycle. It also addresses how the results of safety analyses will be communicated and the sign-
off/approval process for all activities. A Safety Program Plan is usually created and maintained
at an organizational or “programmatic” level. Within NASA, a program may have one or many
projects. At the project level, there should also exist a safety plan which describes for that project
how it will incorporate the programmatic plan requirements as well as those specific to the
project.

Figure 2-1 Hazard Analysis
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2.2.1 System Safety Process

System safety analyses follow the life cycle of the system development efforts. The system is
comprised of the hardware, the software, and the interfaces between them (including human
operators). What generally happens in the beginning of project development is that the hardware
is conceived to perform the given tasks and the software concept is created that will operate
and/or interact with the hardware. As the system develops and gains maturity, the types of safety
analyses go from a single, overall assessment to ones that are more specific.

While software is often considered a subset of the complete system (a subsystem), it is actually a
“coexisting” system, acting with and upon the hardware system. Because software often
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commands, interprets, stores and monitors the system functions, it should always be considered
in a systems context.

The System Safety Project Plan should describe interfaces within the assurance disciplines as
well as the other project disciplines. In practical terms, that means that all parties involved in the
project should decide who is doing what analyses. Depending mostly on where the expertise
resides, different organizations may be responsible for performing the necessary analyses. For
instance, the software assurance engineer may perform all the software safety analyses and the
software developer will perform any software development analyses. In a larger organization, or
for a very critical project, there will usually be a separate software safety engineer who performs
the software safety and development analyses. If the project uses an Independent Verification
and Validation (IV&V) team, they will review the analyses plus possibly perform some
additional analyses. All analyses and tasks should be complementary and supportive, regardless
of which group (development, assurance, safety, [IV&V) has the responsibility. The analyses and
tasks may be distributed between the groups, and within each discipline, according to the
resources and expertise of the project personnel. The project manager along with the appropriate
safety and mission assurance organization must assure coverage and support for the needed
safety tasks.

Concurrent engineering can help to provide better oversight, allowing information and
ideas to be exchanged between the various disciplines, reduce overlapping efforts, and

% improve communications throughout the project. Safety and assurance personnel bring a
safety “point of view” to a project, and should be included at the earliest possible stage.
The information obtained and rapport established by being an early member of the team
will go a long way in solving problems later in the project. Designing in safety from the
beginning is far easier, more elegant, and cheaper than late-stage alterations or additions
intended to work the safety features in after the rest of the system is designed.

The Software System Safety Handbook [7] produced by the Department of Defense has an
excellent reference to system safety from a risk management perspective. Chapter 3 of that
document goes into detail about how risk and system safety are intertwined. Chapter 4 describes
planning a software safety program, including hazard analyses. Appendix E of that document
details generic requirements and guidelines for software development and test.

2.2.2 System Safety and Software Development

System safety within NASA has its own set of tasks, independent of the software development
lifecycle. These tasks include:

e Creating Safety Data Packages that describe the instrument (hardware, software, and
operations) and provide information on any safety hazards, controls, or mitigations.

e Conducting safety reviews through out the system lifecyle, usually Phase 0/1, Phase II,
and Phase III. For all Shuttle and ISS sub-systems as well as their payloads, these
reviews are conducted at Johnson Space Center before the Shuttle or ISS Safety Panel.
However, local review panels may be established as pre-cursors as well as for other
programs, facilities and projects.

e Conducting safety verification activities, including completing the Safety Verification
Tracking Log prior to launch. The completed log shows that all safety features, controls,
and fail safes are working as required.
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Software safety engineers, as well as other members of the project team, will provide
information and input to the system safety engineer.

Figure 2-2 illustrates the relationship between the basic System Safety life cycle (on top), the
system lifecycle, and the software lifecycle. Although the tasks shown in this slide are
specifically shown against the backdrop of the waterfall lifecycle, the information is still quite
usable for any lifecycle model. Figure 2-2 is a pictorial representation only and should not be
used to determine time, length of, or relationship in size for the various phases.

Figure 2-2 Safety, System and Software Timeline

Phase 0/1 Phase Il Phase llI Safety Verification Tracking
Safety Reviews v v v Log Closeout
PHA SYSTEM AND SUB-SYSTEMS HAZARD ANALYSES

CONCEPT

SYSTEM REQUIREMENTS .
SYSTEM ARCHITECTURE DESIGN

SYSTEM DETAILED DESIGN
SYSTEM BUILD

SW CONCEPT SYSTEM ACCEPTANCE

SW REQUIREMENTS OPERATION
SW DESIGN
TEST

SW IMPLEMENTATION

SW TESTING

System safety activities are discussed in the next section in general terms. For more information
on the NASA Space Shuttle and ISS system safety process, see NSTS 1700.7B, Safety Policy
and Requirements for Payloads Using the Space Transportation System; NSTS 22254,
Methodology for Conduct of Space Shuttle Program Hazard Analyses; NSTS 18798,
Interpretations of NSTS Payload Safety Requirements; and JSC 26943, Guidelines for the
Preparation of Payload Flight Safety Data Packages and Hazard Reports.
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The first step to any safety analysis is asking the right questions: What could go wrong? Why
won’t it? What if it did? Everyone involved in each activity throughout the life cycle of the
system should think about all the ways the system or software can fail, how to prevent the failure
from occurring, and how to prevent or mitigate an accident if the failure occurred.. Everyone has
a different viewpoint and will see different hazards, different ways the system can fail, and new
ways to prevent failures from occurring.

Depending on the program or project, there are many applicable safety requirements. In general,
there are two types of safety requirements: 1) imposed by standards and regulations and 2)
technically specific to the project and its operating environments. The requirements levied from
standards, either established internally by the organization, or externally by government or
industry must be sited within the project documentation as well as any tailoring for the specific
project. These should be specifically written into any contracts or sub-contracts. Such
requirements provide the minimum boundaries that must be met to ensure that the system is safe
and will not cause harm to people, itself, other systems, or the environment. Safety requirements
can include those specific to NASA, the FAA, the Department of Transportation (DOT), and
even the Occupational Health and Safety Administration (OSHA).

Once the regulatory and standard safety requirements have been identified, the available specific
system information is gathered to determine the project specific safety requirements. Usually,
these will be derived from the first safety analysis performed during system concept and
beginning requirements phase. A common assessment tool used during this beginning activity is
the Preliminary Hazard Analysis (PHA). This analysis tool will be discussed in more detail in
Section 2.3.1 and Appendix F. The results of the PHA are a list of hazard causes and a set of
candidate hazard controls, that are taken forward as inputs to the system and software safety
requirements flow-down process.

System hazard controls should be traceable to system requirements. If controls identified
by the PHA are not in the system specification, safety requirements to control the hazards
should be added to that document, to assure that the software specification derived from
the system specification will include the necessary safety requirements.

At least one software requirement is generated for each software hazard control. Each
requirement is incorporated into the Software Requirements Specification (SRS) as a safety-
critical software requirement.

Any software item identified as a potential hazard cause, contributor, control, or
mitigation, whether controlled by hardware, software or human operator, is
designated as safety-critical, and subjected to rigorous software quality assurance,
analysis, and testing. Safety-critical software is also traced through the software safety
analysis process until the final verification. Thus, safety critical requirements need to
be identified as such to insure future changes, as well as verification processes, take
them into appropriate consideration.
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2.3.1 Preliminary Hazard Analysis (PHA) ﬁ

Before any system with software can be analyzed or developed for use in hazardous operations
or environments, a system PHA must be performed. Once initial system PHA results are
available, safety requirements are derived and flow down into the hardware and software
requirements. As the specifications and design take shape, subsystem and component hazard
analyses can begin. The PHA is the first source of “specific” system safety requirements and
may even go so far as to point to specific software safety requirements (i.e., unique to the
particular system architecture). It is a prerequisite to performing any software safety analysis as
it defines the overall hazards for the system.

It is then a matter of determining software’s role in potentially contributing to those hazards, or
in controlling or mitigating them. When performing a PHA, it is important to consider how the
software interacts with the rest of the system. Software is the heart and brains of most modern
complex systems, controlling and monitoring almost all operations. When the system is
decomposed into sub-elements, how the software relates to each component should be
considered. The PHA should also look at how components may feed back to the software (e.g.
failed sensor leading the software to respond inappropriately).

The PHA is the first of a series of system level hazard analyses, whose scope and methodology is
described in NPG 8715.3, NASA Safety Manual [4], and NSTS-22254, Methodology for
Conduct of Space Shuttle Program Hazard Analyses [6].

Appendix F describes the PHA process in more detail. Software safety engineers or others who
may be assisting in a PHA should read that appendix. The software developer should skim the
appendix, noting the information on software hazard controls and must work/must not work
functions.

Note that the PHA is not a NASA-specific analysis, but is used throughout industry. IEEE 1228,
Software Safety Plans, also requires that a PHA be performed.

2.3.2 Risk Levels ‘9 ‘%

Hazard analyses, such as the PHA, are not primarily concerned with whether the hazard is likely
to occur or not. All hazards are bad, even if their occurrence is highly improbable. However,
unlimited time and money are usually not available to address all possible hazards. The hazards
must somehow be prioritized. This prioritization leads to the concept of risk.

Risk is the combination of 1) the probability (qualitative or quantitative) that a program or
project will experience an undesired event such as safety mishap, compromise of security, or
system component failure; and 2) the consequences, impact, or severity of the undesired event
were it to occur.

Each project or program needs to define a set of “hazard severity” levels, using definitions
prescribed in Agency policy, procedures, and standards. Organization-wide definitions should
be used, if available and appropriate. Having a common language helps when team members
from different disciplines discuss the system and software hazards, causes, and controls. The
following definitions of hazard severity levels in Table 2-2 are from NPG 8715.3 and are
included as an example.
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Table 2-2 Risk Definitions

Hazard Seventy
DeﬁnitiOnS

Catastrophic

Loss of human life or permanent
disability; loss of entire system;
loss of ground facility; severe
environmental damage

Critical

Severe injury or temporary
disability; major system or
environmental damage

Moderate

Minor injury; minor system
damage

Negligible

No injury or minor injury; some
system stress, but no system
damage

Of Likely Probable
. “hood : ,
L|Ke ence The event will occur The event will occur several
cGU fifi frequently, such as greater times in the life of an item.

ions than 1 out of 10 times.

ﬁ%eﬁnﬂ

Possible Unlikely Improbable

Likely to occur some time in
the life of an item.

Remote possibility of
occurrence during the life of
an item.

Very rare, possibility is like
winning the lottery

As with the hazard severity definitions, each project or program needs to define the “likelihood
of occurrence” of the hazard. Likelihood may be expressed in quantified probabilities or as a
qualitative measure. Keep in mind that the possibility that a given hazard may occur is usually
based on engineering judgment and not on hard numbers, especially where software is
concerned. The definitions of likelihood of occurrence in Table 2-2 are provided as an example
only, and are based on NPG 8715.3 and “Software Safety Hazard Analysis”[8].

Combining these two concepts (severity and likelihood) leads to a single risk index value for the
hazard. This allows hazards to be prioritized and risks to be managed. Highly likely and severe
hazards require a rigorous development and analysis environment. Improbable and negligible
hazards require little or no extra attention, beyond the good engineering, programming, and
assurance practices used by the project team.

%

The System Risk Index, based on the above severity levels and likelihood of occurrence,
is shown in Table 2-3 Hazard Prioritization - System Risk Index. This is an example
only. Each program, project, or organization should create a similar risk index, using
their definitions of severity and likelihood.
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Table 2-3 Hazard Prioritization - System Risk Index

Severity Levels Likelihood of Occurrence

Likely Probable Possible Unlikely Improbable
Catastrophic 2 3 4
Critical 2 3 4 5
Moderate 2 3 4 6
Negligible 3 4 5 6 7

1 = Highest Priority (Highest System Risk), 7 = Lowest Priority (Lowest System Risk)

Prioritizing the hazards is important for determining allocation of resources and acceptance of
risk. For NASA, hazards with the highest risk, Level 1, are not permitted in a system design. A
system design exhibiting “1” for hazard risk index must be redesigned to eliminate or mitigate
the hazard probability of occurrence and/or severity level to within an acceptable range. The
lowest risk indices, "5" and above, require minimal, if any, safety analysis or controls. For the
Levels 2, 3, and 4, the amount of safety analysis required increases with the level of risk. The
extent of a safety effort is discussed within Chapter 3, where three levels of safety analysis -
Minimum, Moderate, and Full - are described. The three levels of safety analysis correspond to
risk as follows:

Table 2-4 System Risk Index

IS{{:lt(eirrln dex Class of Safety Activities Recommended
1 Not Applicable as is (Prohibited)

2 Full

3 Moderate

4,5% Minimum

6,7 None (Optional)

*Level 5 systems fall between Minimum and Optional, and should be evaluated to determine the class of safety

activities required.

2.3.3 NASA Policy for Hazard Elimination and Control E‘!’ : ;'
The NASA policy towards hazards of Risk Index 2, 3 or 4/5 is defined in NPG 8715.3,
paragraph3.4. Hazards are mitigated according to the following stated order of precedence:

e FEliminate Hazards

Hazards are eliminated where possible. This is best accomplished through design, such
as by eliminating an energy source. For example, software could have the ability to
affect a pressure control. If software access to the control is not needed, and
malfunctioning software could lead to a hazard, then preventing software’s access to
the control removes the possibility of software’s contribution to the hazard. From a
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system perspective, hazard elimination would be in the form of choosing a design
solution that does not require hazardously high pressure.

e Design for Minimum Hazards

Hazards that cannot be eliminated must be controlled. For those hazards, the PHA
evaluates what can cause the hazards, and suggests how to control them. Control by
design is preferred. The hazard may be minimized by providing failure tolerance (e.g.
by redundancy - series and/or parallel as appropriate), by providing substantial margins
of safety, or by providing automatic safing. For example, software verifies that all
conditions are met prior to ignition of rocket engines.

e Incorporate Safety Devices

An example of a safety device is a fire detection and prevention system that detects and
interacts with a fire event. Software may be a part of these devices, and may also
provide one of the triggers for the safety devices, such as turning on a sprinkler system,
sounding an alarm, or flooding the area with an oxygen suppression gas.

e Provide Caution And Warning

Software may monitor one or more sensors and trigger a caution or warning alarm or
announcement. Any software used in these caution and warning devices is safety-
critical.

e Develop Administrative Procedures and Training

Control by procedure is sometimes allowed, where sufficient time exists for a flight

crewmember or ground controller to perform a safing action. The concept of “time to

criticality” is an important design aspect of the software/hardware/human interaction in

controlling safety critical situations.

N

2.3.4 Software Subsystem Hazard Analysis & h ’ :
The PHA identifies hazards at the system level. Some subset of these hazards will involve
software. The Software Subsystem Hazard Analysis determines which of the hazards (including
hazard causes, controls, mitigations, or verifications) have software as a component.

At the beginning of a project, the design is high-level and fluid. While some software
functional areas may be identified early on, many more will become apparent as the
design matures. It is vital to revisit this analysis regularly, as more detail emerges. Also,

% a shift of functionality from hardware to software is common during the design process.
As the design progresses and possibly changes, system, software, safety and assurance
engineering must consider the potential impact to safety. The system and/or software
safety engineers update this analysis as the design and implementation progress, or when
the system changes.

The procedure for a Software Subsystem Hazard Analysis is fairly simple. The hazards listed on
the Preliminary Hazard List (PHL) are examined for a software component. Those that have
software as a cause, control, mitigation, or verification are put on a Software Hazard List. The
system and software specifications are examined to verify that the software functions identified
on the hazard list are included as safety-critical requirements.
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Software may impact a hazard in several ways.

Software failure may lead to a hazard occurring (hazard cause). For example,
software may incorrectly command a mechanical arm to move past its operational limit,
resulting in the arm damaging nearby equipment or causing injury. A failure in a data
conversion function could incorrectly report a temperature value, allowing a furnace door
to be opened when the temperature inside is at a dangerous level.

Failure of a software hazard control may allow a hazard to occur. Software that
monitors pressure and opens a valve when it reaches a threshold may be a hazard control.
Failure of that software would allow an over-pressurization of the vessel and a potential
for a rupture or other hazard.

Software safing mode (move from hazardous to non-hazardous state) may fail.
Failure of the software to detect or shut down a runaway electromechanical device (such
as a robotic arm or scan platform) is an example of such an impact.

Software used to mitigate the consequences of accident may fail. As an example,
software controlling the purging of toxic gases (which resulted from a failure in some
other portion of the system) may fail, allowing the gases to remain in the chamber or be
vented inappropriately to the outside air.

Software used to verify hazard hardware or software hazard controls may fail.
Failure in this situation would be due to invalid results (either verifying a control when it
really failed or failing a control when it actually works). “False positives” may allow a
potentially hazardous system to be put into operation.

When conducting the Software Subsystem Hazard Analysis, it is important to consider many
types of failures. Examples of failures to consider are:

e Sensors or actuators stuck at some value (all zeros, all ones, some other value)
e Value above or below range

e Value in range but incorrect

e Physical units incorrect

e Wrong data type or data size

e Incorrect operator input

e Overflow or underflow in calculation

e Algorithm incorrect

e Shared data corrupted

e Out of sequence event

e Failure to meet timing requirement

e Memory usage problems

e Data overflow due to inappropriate data packet or data arrives too quickly
e Data sampling rate not sufficient to detect changes

e One task failing to release shared resource

e Deadlocking in a multitasking system

e Effects of either system or computer hardware failures on the software
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“Software Safety Hazard Analysis” [94], prepared for the US Nuclear Regulatory Commission,
is an excellent reference for details on performing the Software Subsystem Hazard Analysis.

Software safety analyses are conducted throughout the development cycle of the
software. It is important to reexamine software’s role and safety impact throughout
the system development phases. Software’s role is often altered to accommodate
system changes or work around hardware problems. Additions to the system’s
functionality can result in additions and/or changes to the hazards as well as functionality.
As the software changes, hazard contributions may be added, deleted, or their criticality
modified. These changes to the safety-critical software functionality must be reflected in
the requirements, design, implementation, and verification of the system and software.

The following sections describe these various software safety analyses. Chapter 3 provides
guidance on tailoring the number of analyses required to match the risk of the software hazards.
Other software safety analyses, such as Software Fault Tree Analysis (SFTA), Software Failure
Modes and Effects Analysis (SFMEA), requirements Criticality Analysis (CA), and specification
analysis, are described in Chapters 5 through 10.
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Chapter 3 Software Safety Planning

If the Preliminary Hazard Analysis (PHA) reveals that any software is safety-critical, a software
safety process must be initiated. This chapter describes how to plan the software safety effort,
and how to tailor it according to the level of risk of the system and software.

Determination of the level of safety risk inherent in the system was presented in Section 2.3.2
Risk Levels. This chapter focuses on the risk level of the software. Once the risk level is
determined (i.e., a risk index is assigned), the amount of effort that must be expended to assure
safe software can be estimated.

Figure 3-1 Participants in a Successful Safety Process

Systems
Engineers

System Safety
Engineers

Software
Developers

Software Safety
Engineers

Project Manager

Software Assurance
Engineers

N

Lines of Communication.
It is VERY important that these lines
are established and maintained.

Each discipline involved in the project has a role to play in the creation of safe software.

e The project manager maintains a high-level overview of the whole process, works with
the team to include the extra software development and analysis tasks in the schedule and
budget, and can be called on to help in negotiations between team members. When
questions arise as to the necessity of a particular analysis or development technique, the
project manager is usually the final authority. Ultimately, the Project Manager
determines the amount and types of risk they are willing to accept for their project. They
may be required to work with, utilize, and pay for a certain amount of Independent
Verification and Validation, but they determine the balance of overall safety analyses,
verification, and validation to take place. ~SMA and IV&V provide an independent
reporting path to assure that an appropriate amount of safety analysis, design and
verification does take place.
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Systems engineers are responsible for designing the system and partitioning the elements
between hardware and software. Because they see the “big picture,” they have a unique
perspective. System developers can make sure that safety-critical elements are not
overlooked in the initial analyses. As system elements shift from hardware to software
later in the design process, these engineers can make sure that the criticality of the design
component is also transferred.

System safety engineers determine what components of the system are hazardous. They
look at the system as a whole entity, but also need to understand how the different
elements function (or fail to function).

Software safety engineers build on the work of the system safety engineers. They look
closely at the requirements and development process to verify that software safety
requirements are present and being designed in. They perform analyses and tests to
verify the safety of the software. The software safety engineer works in conjunction with
the system safety organization to develop software safety requirements, distribute those
safety requirements to the software developers, and monitor their implementation. The
software safety engineer also analyzes software products and artifacts to identify new
hazards and new hazard causes to be controlled, and provides the results to the system
safety organization to be integrated with the other (non-software) subsystem analyses.

Software developers are the “in the trenches” engineers who design, code, and often test
the system. They are responsible for implementing all the requirements in the software
system. Software developers can have a great impact on the safety of the software by the
design chosen and by implementing defensive programming techniques.

Software Assurance engineers work with the software developers and software safety
engineers to assure that safe software is created. They monitor development processes,
assure the traceability of all requirements, perform or review analyses, witness or
perform tests, and provide an “outside view” of both the software process and products.

Independent Verification and Validation (IV&V). For all NPG 7120.5 and all safety
critical projects, the project manager 1is required to perform a self assessment of the
project software and report the findings to the NASA IV&V Facility and local SMA
organization. (See NPD/NPG 8730.1, Software Independent Verification and Validation
Policy/Guidance.) The IV&V Facility may then perform their own review and present
the project manager with their estimate for additional analyses. IV&V is in addition to
software assurance and software safety and not a replacement for those roles.

In a small team, there may not be a separate software safety engineer. The software assurance
engineer, the system safety engineer, the system developer, or someone from the software
development team may take on this role, depending on the individual’s expertise. Several people
working cooperatively may also share the software safety role.

Software assurance functions within the overall project and software development processes and
can be a key factor in developing safer software. For safety, the objectives of the software
assurance process are to:

Develop software that has fewer defects (and therefore fewer safety-related defects).
Software assurance and IV&V can provide guidance on best practices and process
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improvements that may reduce the required effort to develop the software and/or the
number of inherent defects.

e Find the defects earlier in the lifecycle, when they are less costly to correct.
e Assure the safety of the software, contributing to the assurance of system safety.

e Help the project stay within budget and schedule by eliminating problems and risk early
on.

e Reduce the software-related risks (safety, reliability, mission success, etc.)

Chapter 4 presents an overview of the software development process, including various life-
cycle models. Chapters 5 through 10 discuss the various analysis and development tasks used
throughout the software development life cycle. The division of the tasks and analyses into
conception, requirements, design, implementation, verification, and maintenance phases does not
imply a waterfall lifecycle. These concepts are applicable to all lifecycles, though at different
times and to varying degrees.

3.1 Scoping the Software for the Safety Effort % &

The System Risk Index specified the hazard risk for the system as a whole. The software
element of the system inherits from the system risk, modified by the extent with which the
software controls, mitigates, or interacts with the hazardous elements. In addition, the
complexity of the software and the development environment play a role. Merging these two
aspects is not an exact science, and the information presented in this section is meant to guide the
scoping and then tailoring of the safety effort. The numerous charts provided are to be used only
as a starting point when determining the level of safety effort.

The process of scoping the software safety effort begins with the determination of how much
software is involved with the hazardous aspects of the system. The PHA, Software Hazard
Analysis, Software Risk Assessments, and other analyses provide information for determining
whether systems and subsystems should be initially categorized as safety-critical.

Scoping the software safety effort can be accomplished by following three steps:

1. Identify safety-critical software
2. Determine safety-critical software criticality (i.e., how critical is it?)

3. Determine the extent of development effort and oversight required

The third scoping step actually leaves the project manager with choices in how to meet the
needed development and oversight levels. Using the information gained from the scoping
process, as well as input from the safety and assurance engineers, the project manager can better
tailor the effort and oversight needed for a particular project.

determine if there is even a safety concern. The initial criteria for determining if software is
safety-critical is found in section 2.1.3.
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Reliability is also a factor when determining whether software is safety-critical. Most aerospace
products are built up from small, simple components to make large, complex systems.
Electronic components usually have a small number of states and can be tested exhaustively, due
to their low cost, to determine their inherent reliability. Mechanical components have similar
means to determine their predictable, usable life span when used within predefined
environmental and operational limits. Reliability of a large hardware system is determined by
developing reliability models using failure rates of the components that make up the system.
Reliability and safety goals of hardware systems can usually be reached through a combination
of redundant design configurations and selection of components with suitable reliability ratings.

Reliability of software can be hard to determine, and as yet, is mostly qualitative and not
quantitatively expressed. Software does not wear out or break down. It may have a large
number of states that cannot be fully tested. For example, an important difference between
hardware and software is that many of the mathematical functions implemented by software are
not continuous functions, but functions with an arbitrary number of discontinuities. Although
mathematical logic can be used to deal with functions that are not continuous, the resulting
software may have a large number of states and lack regularity. It is usually impossible to
establish reliability values and prove correctness of design by testing all possible states of a
medium to large (more than 40,000-50,000 lines of code) software system within a reasonable
amount of time.

Much of the software used within NASA is “one-off” code, that is written once for a particular
operation/mission and then never used again. That is, there is little to no reuse and thus there is
little record of long term use to provide statistics on software reliability. Even code used several
times, such as that for the Shuttle operations, is often modified. Reliability estimation requires
extensive software testing. Except in the rare cases where formal methods are used to capture the
requirements and/or design, testing can only commence after preliminary code has been
generated, typically late in the development cycle. At that point, exhaustive testing is not in the
schedule or budget. As a result, it is very difficult to establish accurate reliability and design
correctness values for software.

If the inherent reliability of software cannot be accurately measured or predicted, and most
software designs cannot be exhaustively tested, the level of effort required to meet safety goals
must be determined using other characteristics of the system. The following characteristics have
a strong influence on the ability of software developers to create reliable, safe software:

e Degree of Control: The degree of control that the software exercises over safety-
critical functions in the system.

Software that can cause a hazard if it malfunctions is considered safety-critical
software. Software which is required to either recognize hazardous conditions and
implement automatic safety control actions, provide a safety-critical service, or inhibit a
hazardous event, will require more software safety resources and detailed assessments
than software which is only required to recognize hazardous conditions and notify a
human operator to take necessary safety actions. Human operators must then have
redundant sources of data independent of software, allowing them to detect and
correctly react to misleading software data before a hazard can occur.
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Fatal accidents have occurred involving poorly designed human computer interfaces,
such as the Therac-25 X-ray machine [9]. In cases where an operator relies only on
software monitoring of critical functions, then a complete safety effort is required.

o Complexity: The complexity of the software system. Greater complexity increases the
chances of errors.

The number of safety related software requirements for hazards control increases
software complexity. Some rough measures of complexity include the number of
subsystems controlled by software and the number of interfaces between
software/hardware, software/user and software/software subsystems. Interacting,
parallel executing processes also increase complexity. Note that quantifying system
complexity can only be done when a high level of design maturity exists (i.e., detail
design or coding phases). Software complexity can be estimated based on the number
and types of logical operations it performs. Complexity metrics are further discussed in
section 7.4.8.

e Timing criticality: The timing criticality of hazardous control actions.

The speed at which a system with software hazard control must react is a major factor.
Does control need to be exercised faster than a human or mechanical system can react?
With the advent of software control, faults can be detected and countered prior to
becoming full failures. Thus, even embedded real-time software systems which need
microseconds to react to some critical situations can be designed to detect and avoid
hazards as well as control them one they occur. How fast must the system respond?
That depends on the system. For example, spacecraft that travel beyond Earth orbit
need a turnaround time of possibly hours or days in order to notify a ground human
operator of a possible hazard and wait for return commands on how to proceed. That is
likely to exceed the time it takes for the hazard to occur. Thus, on-board software
and/or hardware must deal with the situation autonomously.

You’ve determined 1) the function that software is to perform is safety critical, 2) the needed
level of control, 3) the system complexity, and 4) the required time to react to prevent a hazard
from occurring. The next step is to define the degree of the software criticality, which will
translate to the level of software safety effort.

3.1.2 Determine Software Safety- Criticality % &

Once software has been identified as safety-critical, further analyses such as the Software Failure
Modes and Effects Analyses (SFMEA) or Software Fault Tree Analyses (SFTA) will help to
determine the criticality rating.

The following sections describe how to determine the software risk index. This is an extension
of the system risk index shown in Table 2-3. The level of software risk will determine the extent
of the software safety effort. Software with low risk will require less effort (analyses, tests,
development activities) than software that is high-risk. This exercise will need to be refined as
the design architecture and implementation reveal how the functionality is modularized, or not.
At first, it may be determined that all the software is safety critical, and that may be the final
answer. However, if the safety critical functions can be encapsulated or segregated to some
degree within certain routines or objects, then a more refined safety design and analysis approach
can be made.
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3.1.2.1 Software Control Categories

The degree of control the software exercises over system functions is one factor in determining
the extent of the safety effort required. A reference source of definitions for software control
categories is from MIL-STD-882C. MIL-STD-882C [10] has been replaced by MIL-STD-882D,
which does not reference the software control categories. MIL-STD-882C categorized software
according to its degree of control of the system, as follows:

Table 3-1 MIL STD 882C Software Control Categories

Software | Degree of Control

Control

Category

IA. Software exercises autonomous control over potentially hazardous hardware systems,
subsystems or components without the possibility of intervention to preclude the
occurrence of a hazard. Failure of the software, or a failure to prevent an event, leads
directly to a hazard's occurrence.

IIA. Software exercises control over potentially hazardous hardware systems, subsystems,
or components allowing time for intervention by independent safety systems to
mitigate the hazard. However, these systems by themselves are not considered
adequate.

IIB. Software item displays information requiring immediate operator action to mitigate a
hazard. Software failures will allow, or fail to prevent, the hazard's occurrence.

IIA. Software item issues commands over potentially hazardous hardware systems,
subsystems or components requiring human action to complete the control function.
There are several, redundant, independent safety measures for each hazardous event.

I1IB. Software generates information of a safety-critical nature used to make safety-critical
decisions. There are several redundant, independent safety measures for each
hazardous event.

IVv. Software does not control safety-critical hardware systems, subsystems or components
and does not provide safety-critical information.

Complexity also increases the possibility of errors. Errors lead to the possibility of fault, which
can lead to failures. The following chart builds on what we have from MIL-STD 882C and takes
into consideration the complexity of the software. The chart also relates back to the system risk
index discussed in Section 2.3.2 Risk Levels and has already eliminated System Risk Index level
1 (prohibited) and levels beyond 5 (negligible risk). The software category links the complexity
of the software, the control that the software exerts on a system, the time to criticality, and the
system risk index. This information is used to create a Software Risk Matrix (see Table 3-3).
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Table 3-2 Software Control Categories

Software Control Descriptions
Categories
IA Partial or total autonomous control of safety-critical functions by software.

(System Risk Index 2) Complex system with multiple subsystems, interacting parallel processors, or multiple
interfaces.

Some or all safety-critical functions are time critical.

IIA & IIB* Control of hazard but other safety systems can partially mitigate.

Detects hazards, notifies human operator of need for safety actions.

(System Risk Index 3) Moderately complex with few subsystems and/or a few interfaces, no parallel processing.

Some hazard control actions may be time critical but do not exceed time needed for adequate
human operator or automated system response.

IITA & III B* Several mitigating systems prevent hazard if software malfunctions.

Redundant sources of safety-critical information.

(System Risk Index 4) Somewhat complex system, limited number of interfaces.

Mitigating systems can respond within any time critical period.

1A% No control over hazardous hardware.

No safety-critical data generated for a human operator.

(System Risk Index 5) Simple system with only 2-3 subsystems, limited number of interfaces.

Not time-critical.

Note: System risk index number is taken from Table 2-3 Hazard Prioritization - System Risk Index
* A = software control of hazard. B = Software generates safety data for human operator

3.1.2.2 Software Risk Matrix

The Software Risk Matrix is established using the hazard categories for the columns and the
Software Control Categories (Table 3-2 above) for the rows. The next matrix relates the
software control of a hazard to the system severity levels. A Software Risk Index is assigned to
each element of the matrix, just as System Risk Index numbers are assigned in the Hazard
Prioritization - System Risk Index (Table 2-3) matrix.

NOTE: The Software Risk Index is NOT the same as the System Risk Index, though the two may
appear similar. The difference is mainly that the System Risk Index of 1 (prohibited) has already

been eliminated.

Unlike the System Risk Index, a low index number from the Software Risk Matrix does not
mean that a design is unacceptable. Rather, it indicates that greater resources need to be applied
to the analysis and testing of the software and its interaction with the system.
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Table 3-3 Software Risk Matrix

Hazard Category*
Software Control .
Category Catastrophic Critical Moderate Negligible or
Marginal
1A
. 1 1 3 4
(System Risk Index 2)
ITA & 1IB
(System Risk Index 3)
IIIA & 11IB
, 2 3 5 5
(System Risk Index 4)
v
3k 4** 5 5
(System Risk Index 5)

Note: System risk index number is taken from Table 2-3 Hazard Prioritization - System Risk Index
* Hazard Category definitions are provided in Table 2-2.

** All software in a safety-critical system must be evaluated. If software has the potential to compromise system safety
elements, then it must be treated as safety-critical.

mwl, The interpretation of the Software Risk Index is given in Table 3-4. The level of risk
7548 determines the amount of analysis and testing that should be applied to the software.

Table 3-4 Software Risk Index

Software Risk Index Risk Definition

1 High Risk: Software controls catastrophic or critical
hazards

) Medium Risk: Software control of catastrophic or
critical hazards is reduced, but still significant.

3.4 Moderate Risk: Software control of less significant
hazards

5 Low Risk: Negligible hazard or little software control

Figure 3-2 shows the relationships among the various risk indices and software criteria. The
System Risk Index feeds into the Software Risk Index, modified by the software categories. The
modification relates to how much control the software has over the hazard, either potentially
causing the hazard or in controlling or mitigating the hazard. Note that the Software Risk Index
relates to only a subset of the System Risk Index, because the riskiest level (System Index 1) is
prohibited, and the levels with the least system risk do not require a safety effort.
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Figure 3-2 Relationship of Risk Indices
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3.1.3 Determine the Safety Effort and Oversight Required
3.1.3.1 Determine Extent of Safety Effort % & Ft

The Software Risk Index (Table 3-3) determines the level of required software safety effort for a
system (Table 3-5 Required Software Safety Effort). The mapping is essentially: Software Risk
Index 1 = full effort, Software Risk Index 2 and 3 = moderate effort, and Software Risk Index 4
and 5 = minimum effort. However, if the Software Risk Index is 2, consider whether it is a
“high” 2 (closer to level 1 — more risk). A high 2 should follow the full safety effort, or
somewhere between full and moderate. Also, if the Software Risk Index is a high 4, then the
safety effort falls into the moderate category.

Note that category IV software, which does not participate in any hazardous functions, may still
require a minimum software safety effort. Normally, no safety effort would be needed for such
software. However, with catastrophic and critical hazards, non-safety-critical software should be
evaluated for possible failures and unexpected behavior that could lead to the hazard or to the
compromise of a hazard control or mitigation.

Further explanation of Full, Moderate, and Minimum software safety effort is found in_Section
3.2.
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Table 3-5 Required Software Safety Effort

Software Category

Hazard Severity Level from Table 2-2

See Table 3-3 Catastrophic Critical Moderate Negligible / Marginal
TA Moderate Minimum
(Software Risk Index 1)
A & 1IB Moderate Minimum Minimum
(Software Risk Index 2/3)
IIA & 111B Moderate Moderate Minimum None
(Software Risk Index 4/5)
1A% . ..

Minimum Minimum None None
Software does not directly
control hazardous operations.

WARNING: Requirements are subject to change as the system design progresses! Often
items that were assigned to hardware are determined to be better (or more cheaply) developed
in software. Some of those items may be safety-critical. As system elements are redistributed,
it is vital to revisit the software safety effort determination. If the new requirements lead to
software controlling hazardous hardware, then more effort needs to be applied to the software
safety program.

3.1.3.2 Oversight Required

The level of software quality assurance and independent oversight required for safety assurance
depends on the system risk index as follows:

Table 3-6 Degree of Oversight vs. System Risk

Software Risk System Risk Index | Degree of Oversight
Index
1 Not applicable (Prohibited)
2 Fully independent IV & V' organization, as well as in-house SA
2 3 In house SA organization; Possible software IA'
3 4 In house SA organization
4,5 5-7 Minimal in house Software Assurance (SA)

' NASA NPG 8730.x (draft) “Software Independent Verification and Validation (IV&V) Management”
details the criteria for determining if a project requires IV&V or Independent Assessment (IA). This NPG
should be followed by all NASA projects when establishing the level of IV&V or IA required.
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The level of oversight indicated in the preceding table is for safety purposes, not for mission
success. The oversight required for a project would be the greater of that required for either
mission success or safety purposes.

A full-scale software safety development effort is typically performed on a safety-critical flight
system, (e.g., a human space flight vehicle, or high value one-of-a-kind spacecraft or aircraft,
critical ground control systems, critical facilities, critical ground support equipment, payloads on
expendable vehicles.). Other types of aerospace systems, such as non-critical ground control
systems, facilities, and ground support equipment, or unmanned payloads on expendable
vehicles, often use less rigorous development programs. In these cases, subsets of the software
safety development and analysis tasks can be used.

"«
3.2 Tailoring the Software Safety Effort

Once the scope of the software safety effort has been determined, it is time to tailor it to a given
project or program. The safety activities should be sufficient to match the software development
effort and yet ensure that the overall system will be safe.

The scope of the software development and software safety effort is dependent on risk. Software
safety tasks related to lifecycle phases are listed within the development phase chapters
(Chapters 5 through 10) of this guidebook. A recommendation® is given for each technique or
analysis and each software safety effort level (full, moderate, and minimum). Software
developers may employ several techniques for each development phase, based on a project's
level of software safety effort. At the very minimum, a project must review all pertinent
specifications, designs, implementations, tests, engineering change requests, and problem/failure
reports to determine if any hazards have been inadvertently introduced. Software assurance
activities should always verify that all safety requirements can be traced to specific design
features, to specific program sets or code elements, and to specific tests conducted to exercise
safety control functions of software (See Section 6.6.1 Software Safety Requirements Flow-down
Analysis).

Each NASA project, regardless of its level of safety-criticality, must perform an IV&V
evaluation at the beginning of the project, and whenever the project changes significantly.
NPD 8730.4 describes the process and responsibilities of all parties. IV&V provides for
independent evaluation of the project software, including additional analyses and tests
performed by the IV&V personnel. This is in addition to any analyses and tests
performed by the project Software Assurance.

If your system will include off-the-shelf software (COTS, GOTS), reused software from another
project, or software developed by a contractor, refer to Chapter 12 Software Acquisition.

Recommendation Codes
F Mandatory vV Highly Recommended
v Recommended N Not Recommended

"Not Recommended" are expensive relative to the required level of effort and the expected benefits.
"Recommended" techniques may be performed if extra assurance of safety or mission success is desired.
"Highly Recommended" entries should receive serious consideration for inclusion in system development.
If not included, it should be shown that safety is not compromised. “Mandatory” are required.
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Additional analyses and tests may need to be performed, depending on the criticality of the
acquired software and the level of knowledge you have about how it was developed and tested.
The level of safety effort may be higher if the COTS/reused/contracted software is safety-critical
itself or interacts with the safety-critical software.

g

s Sections 3.2.1 through 3.2.4 below help determine the appropriate methods for software
quality assurance, software development, and software safety for full, moderate, and
minimum safety efforts. Ultimately, the categorization of a project’s software and the

range of selected activities must be negotiated and approved by project management,

software development, software quality assurance, and software systems safety personnel
together.

$

=
4

Other techniques, which are not listed in this guidebook, may be used if they can be shown to
produce comparable results. Ultimately, the range of selected techniques must be negotiated and

approved by project management, software development, software quality assurance, and
software systems safety.

The following software activities can be tailored:

Development The use of safety features such as firewalls, arm-fire commanding, etc.
depends on where it is best applied and needed. The degree to which
each of these activities is performed is related to the software risk.
Software Safety features should be reflected in the requirements.

Analysis There are many types of analyses that can be completed during
software development. Every phase of the lifecycle can be affected by
increased analysis as a result of safety considerations. The analyses
can range from Requirements Criticality Analysis to Software Fault
Tree Analysis of the design to Formal Methods.

Inspections Inspections can take place in a number of settings and with varying
products (requirements to test plans). The number of inspections and
products is dependent on the risk related to the system.

Reviews The number of formal reviews and the setting up of delta reviews can
be used to give the organization more places to look at the products as
they are being developed.
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Verification and Verification checks that the system is being “built right” by
Validation Activities | determining whether the products of a given phase of software
development fulfill the requirements established during the previous
phase. Verification methods include analysis, review, inspection,
testing, and auditing. Validation checks that the “right product” is
being built, with testing as the usual primary method.

The number of tests, amount of code subjected to detailed testing, and
the level of test coverage can be tailored. The frequency of Software
Assurance and Safety audits of development processes and products, as
well as the number of products to be audited, can also be tailored.
Analyses, inspections, and reviews are discussed in the paragraphs
above.

3.2.1 “Full” Software Safety Effort

Systems and subsystems that have severe hazards which can escalate to major failures in a very
short period of time require the greatest level of software safety effort. Some examples of these
types of systems include life support, fire detection and control, propulsion/pressure systems,
power generation and conditioning systems, and pyrotechnics or ordnance systems. These
systems may require a formal, rigorous program of quality and safety assurance to ensure
complete coverage and analysis of all requirements, design, code, and tests. Safety analyses,
software development analyses, safety design features, and Software Assurance (SA) oversight
are highly recommended. In addition, IV&V activities may be required.

3.2.2 “Moderate” Software Safety Effort

Systems and subsystems which fall into this category typically have either 1) a limited hazard
potential or 2) the response time for initiating hazard controls to prevent failures is long enough
to allow for human operators to respond to the hazardous situation. Examples of these types of
systems include microwave antennas, low power lasers, and shuttle cabin heaters. These systems
require a rigorous program for safety assurance of software identified as safety-critical. Non-
safety-critical software must be regularly monitored to ensure that it cannot compromise safety
controls or functions. Some analyses are required to assure there are no “undiscovered” safety-
critical areas that may need software safety features. Some level of Software Assurance
oversight is still needed to assure late design changes do not affect the safety criticality.

A project of this level may require IV&V. However, it is more likely to require a
software Independent Assessment (IA).

Software independent assessment (IA) is defined as a review of and analysis of the
program/project’s system software development lifecycle and products. The IA differs in scope
from a full IV&V program in that IV&V is applied over the lifecycle of the system whereas an
IA is usually a one time review of the existing products and plans. In many ways, IA is an
outside audit of the project’s development process and products (documentation, code, test
results, and others).
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3.2.3 “Minimum” Software Safety Effort

For systems in this category, either the inherent hazard potential of a system is very low or
control of the hazard is accomplished by non-software means. Failures of these types of systems
are primarily reliability concerns. This category may include such things as scan platforms and
systems employing hardware interlocks and inhibits. Software development in these types of
systems must be monitored on a regular basis to ensure that safety is not inadvertently
compromised or that features and functions are added which make the software safety-critical. A
formal program of software safety is not usually necessary. Of course, good development
practices and SA are always necessary. The development activities and analyses in described in
Chapters 5 through 10 can provide increased reliability as well as safety, and for a minimal
effort.

3.2.4 Projects with Mixed Levels of Effort

Not all projects fall into neat categories for classification. Some projects may be large and
complex, but with a small portion of safety-critical, low risk software. Other projects may be
small, but a significant portion of the software is safety-critical and high risk.

Not all the software within a project needs to be treated in an identical way. Safety-critical
software components can have different levels of software safety effort applied to them. High-
risk safety-critical software components may undergo a “full” safety effort, while low risk
safety-critical components may only undergo the “minimum” safety effort tasks and analyses.

Too often smaller projects argue that they have no safety-critical software out of concern
that the label will lead to massive amounts of work. This is not the case. Partitioning the

% safety-critical software from code that is not safety-critical allows the safety effort to be
applied only to that safety-critical portion. Further tailoring of the software safety
program to match the risk from the safety-critical portion may lead to a reduced, or at
least more focused, safety effort. The extent of the software safety effort can be
negotiated between the project manager, software developers, software assurance
engineers, and system or software safety engineers.
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Chapter 4 Safety-Critical Software Development

The cardinal rules for safety are:
¢ No single event or action shall be allowed to initiate a potentially hazardous event.
¢ When an unsafe condition or command is detected, the system shall
o Inhibit the potentially hazardous event sequence.

2

o Initiate procedures or functions to bring the system to a predetermined “safe
state.

We all want systems with software products that work reliably, provide required
functionality, and are safe. The software we create must not allow hazardous events to

&a occur, and must be capable of returning the system to a safe state when it has veered into
dangerous territory. Software designers must be aware of the safety implications of their
design, and software engineers must implement that design with care. Safety must be in the
forefront of everyone’s mind.

A structured development environment and an organization using state of the art

methods are prerequisites to developing dependable safety-critical software.

Safe software does not just “happen”. It is crafted by a team of software engineers and designers
from well-understood requirements. The software products are analyzed by the developer, software
assurance engineers, and software safety engineers. The final code is tested, either by the
developer, assurance personnel, or a separate test organization. The whole process is overseen by a
manager cognizant of the entire project. All disciplines contribute to the production of safer
software.

This chapter provides an overview of a safety-oriented software development process. System
safety engineers unfamiliar with software development, and software developers unfamiliar with
safety-critical systems, are the intended audience.

4.1 Crafting Safer Software

Five Rules for Creating Safer Software

1. Communicate

2. Have and Follow Good Software Engineering Practices and Procedures
3. Perform Safety and Development Analyses
4

Incorporate Appropriate Software Development Methodologies, Techniques &
Design Features

5. Caveat Emptor
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4.1.1

Communication

Communication is an intangible process that can greatly improve the safety of the software and
the system being created. Communication is more than just verbal exchange. It includes
documentation, notes, email, video, and any other form of communication. It is important that all
team members communicate regularly. Some goals of communication are to:

%

Prevent misunderstandings. Everyone on the team makes assumptions as part of their
work, but the assumptions are not always the same. For example, the electronic design
engineer may order the bits high-to-low, but the software engineer may interpret them
low-to-high. Communication — verbal or written — prevents this type of problem.

Identify risks before they become problems. Communication is the center of the Risk
Management paradigm (see NPR 8000.4, Risk Management Procedures and Guidelines).
Brainstorming is often used to identify project risks. People from varying backgrounds
and points-of-view see different risks. A diverse team, skilled in communication, will
usually find better solutions to the problems.

Provide insight into the reasoning behind design decisions. Knowing the reasons why
a design decision was made can prevent problems when the design is changed down the
road in response to a requirements change, or when “fixes” are introduced into the
system.

Make team members aware of anomalies, problems, or other issues. Prior to
established baselines, anomaly or problem tracking is often minimal or non-existent.
Regular communication provides an informal tracking system. It also promotes a cross-
disciplinary approach to problems. For example, if the operators make similar mistakes,
perhaps the graphical display needs to be made more user friendly.

Provide management with a qualitative insight into the state of the project. Besides
giving a feel for the progress, communication allows management to spot some problems
early. Grumbling among the developers may indicate personality problems, management
problems, or the effects of too much schedule pressure, for example. An informal
communication channel between software safety and management may allow resolution
of safety concerns before the problem gets out of hand.

Help engineers grow in knowledge and experience. The quality of the team members
has a direct effect on the safety and reliability of the software. Communication helps
junior engineers learn from the experiences of more senior engineers.

Communication is one aspect of human factors in safety-critical systems. Human factors are
discussed in more detail in section 11.9.

NASA-GB-8719.13 47



>
[
N

Good Software Engineering Practices and Procedures

Before beginning software development, processes and methodologies need to be
selected from those available. No one process or methodology is a “silver bullet.”
Intelligent selection needs to be done, matching the process with the needs, resources,
and talents of the software development team. “Cutting edge” techniques or processes
may not be the best choice, unless time and budget exist to allow extensive training of the
development and assurance teams. Staying with a well understood process often
produces better (i.e. safer and more reliable) software than following the process-of-the-
year.

p @

This guidebook cannot go into great detail on how to craft good software. Several important
elements of a good development process are discussed in the following sections. The references
below are just a few examples, and are provided to give a starting point for those interested in
learning more about software engineering.

o Software Engineering: A Practitioner's Approach by Roger Pressman, 5th Edition (2001)
o Software Engineering 5th Edition, by I. Sommerville (1996)

o Software Systems Engineering by Andrew Sage and James D. Palmer.

o Software Engineering: The Production of Quality Software by Shari Pfleeger, 2nd

Edition (1991)

e Classic and Object-Oriented Sofiware Engineering, 3rd Edition, by Stephen R. Schach
(1996)

e Code Complete: A Practical Handbook of Software Construction, by S. McConnell
(1993)

o Object-Oriented Software Engineering: A Use-Case Driven Approach, by 1. Jacobson
(1997)

4.1.3 Perform Safety and Development Analyses

Well-crafted software is not the only prerequisite for safe software. Safety analyses are used to
verify that the software properly addresses the safety issues. As designs change, or the design is
implemented in code, analyses verify that no new hazards were introduced. Software
development analyses are used to confirm that the design or code does what is needed, especially
within the safety-critical areas.

Safety and development analyses are discussed in Chapters 5 through 10, coordinated with the
phase of the software development. For each phase, tailoring information is provided to select
the most appropriate analyses for the project.

4.1.4 Incorporate Appropriate Methodologies, Techniques, and Design Features

There are many development methodologies, techniques, and design features that can help create
safer software. This guidebook does not provide an exhaustive list of all such areas. However,
the following sections detail some of the development and design techniques and methodologies
for crafting safer software:
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Section 4.2.1

Software Lifecycles

Section 4.2.2

Design Methodologies

Section 4.2.2.3

Formal Methods

Section 4.2.2.5

Design patterns

Software Development Capability Frameworks

Software Configuration Management

Programming for Safety

Fault and Failure Tolerance

Formal Inspections

Sections 7.4.4 and 11.1

Sections 7.4.411.2,11.3
and 11.4

Sections 7.4.5 and 8.4.1

Section 7.4.6
Section 8.4.3
Section 11.9.3

Section 12.1.2

Language selections

Tool and Operating System selections

Coding Checklists, Standards, and Language restrictions

Defensive Programming

Refactoring

Interface Design/Human Factors

Integrating COTS software

4.1.5 Caveat Emptor

“Buyer Beware.” COTS software and hardware are extremely common in most systems. Even
if the software is developed in-house, the tools used (e.g., compiler, editor, debugger) are usually
purchased. Operating systems are rarely created by the development team, but are usually
procured from a commercial vendor or selected from those freely available.

Safety is usually not on anyone’s mind when they select a compiler, editor, or other tool,
but it should be. All software must be considered potentially flawed. This isn’t a cause

& for panic, however. Understanding how the software tool, library, operating system, or
other element could fail is important in guarding against such a failure. Knowing that a
potential failure could impact the safety of the system is the most important aspect.
Don’t become complacent when safety is involved!

Chapter 12 discusses issues and concerns with off-the-shelf, reused, and contracted software in

more detail.

Software engineering, like mechanical, electrical, civil, or structural engineering, requires a
disciplined process. No one would consider building a bridge, or a spacecraft, without using the
rules for development that have become second nature to developers of hardware. With software
being so flexible and “easy” to alter, it is even more important to have a disciplined and planned
approach for software.

4.2 The Software Development Process % &
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Creating any software involves more than just coding. For safety-critical software, having and
following an appropriate development methodology that includes requirements analysis, design,
and verification is essential.

A thorough software development process helps assure that:

All the requirements are understood, well documented, and incorporated in the software

The needed functionality is indeed incorporated into the system and all elements work
together without conflict

Analysis and testing have assured the viability of the product under less than friendly
conditions.

The steps to a good software development process are:

Choose a Process

o Lifecycle (Section 4.2.1)

o Design Methodology (Section 4.2.2)
Manage the process (Section 4.3)

o Metrics

o Tasks

o Products

o Tools & Methods
Tailor the process in a plan (Section 4.4)

At the very minimum, a project team must review all pertinent specifications, designs,
implementations, tests, engineering change requests, and problem/failure reports to

determine if any hazards have been introduced.

In the software development process, software engineers ideally perform the following functions:

Work with systems engineers, safety engineers, and assurance engineers to help
formulate the software functionality and determine the role of software in this
project/product. Most of this will be done at the project concept stage, though hardware
and software functions may be redistributed during the system design phase. During the
concept phase, when everything is flexible, is the time to propose possible technical
innovations and approaches. It is also the time to begin to formulate the management
plans and development plans for the software.

Complete software management and development plans. A software management plan
will include schedules, deliverables, reviews, and other details. The development plan
will contain the lifecycle, methodology, language, standards, and techniques to be used to
specify, design, test, manage configuration, and deliver the software. The level of detail
in these documents can be tailored to match the complexity and criticality of the
software.

Analyze requirements and create the software specification. The system requirements
that pertain to software must be specified and included in a software requirements
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document (also called a software specification). Any additional requirements (including
safety requirements), standards and guidelines chosen must also be included. Analysis of
those requirements assures that all requirements are included and that they are achievable
and verifiable.

Create a design that implements the requirements. Analyses assure that the design will
be able to meet the functional and performance requirements.

Implement the design (code) and perform unit testing.

Test the software. Tests include integration, functional, stress, load, and other varieties of
system tests. Final acceptance testing is performed when the system is ready to be
delivered.

While the software engineers are creating the software, software safety engineers perform their
own set of tasks. These activities include:

Perform analyses, or verify the analyses of others. Provide inputs to hazard reports,
tracking matrices, and safety checklists. The analysis work will stretch out over the life
of the software development activity and into the operations or maintenance phase. For
highly safety-critical software, many analyses will be performed by the safety engineer.

Implement the tasks that “fall out” of the analyses. This includes making sure that a
missed safety requirement is actually included in the software requirements and flows
down to the current development phase. Tracking requirements and maintaining
traceability or verification matrices are also implementation activities.

Verify the changes. After the problem was fixed, the software safety engineer needs to
verify that the problem was corrected (usually via inspection or test) and change its
tracking status to “closed.” The engineer also makes sure that the fix does not have a
negative effect on any other portions of the system.

Suggest changes to the software development and verification activities to increase
safety. Examples include Formal Inspections of safety-critical code and enhanced safety
testing to verify the software does not have undesired effects.

A good software development process, understood and followed, greatly increase the odds of

developing safer, more reliable software.
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IMPORTANT NOTE

Throughout the remainder of this Guidebook, the waterfall lifecycle phases (Concept,
Requirements, Design, Implementation, Test, and Operations) will be used to organize
activities. However, this does not imply a strict adherence to the waterfall lifecycle. These
phases are basic concepts that are applicable to all lifecycles. The phases may be broken up into

pieces, or be invoked in an iterative manner, but ultimately the ideas of Concept (planning the
project), Requirements (deciding what to build), Design (deciding how to build it),
Implementation (actually building the software system), Test (making sure it works) and
Operations (using what was built) apply to all lifecycles.

4.2.1 Software Lifecycles

Lifecycle models describe the interrelationship between software development phases. Software
development tasks are usually broken down into the following activities:

a. Identification of Requirements
b. Design

c. Implementation (Coding)

d. Testing and Verification

These are not usually linear, sequential tasks. There may be much overlap, depending on the
lifecycle chosen. The tasks may be performed sequentially, but in small increments, until the
software is completed.

Selecting a software lifecycle is one of the first decisions that will need to be made. The
lifecycle chosen will have a strong impact on how the software is developed and what
products (such as documentation) will be produced. Time spent researching the options,
and especially the types of systems the model works best with, directly benefits the
project as a whole.

As with any important project decision, choosing the appropriate lifecycle should not be done in
a vacuum. Besides the Software Lead Engineer, knowledgeable software, systems, and safety
engineers can, and should, have an impact on these choices.

The lifecycle models discussed in the following sections are not an exhaustive list. New models
are being developed and older models are modified, as software engineering research struggles to
find the best model (or more likely, the best set of models) for software development. The
models included in this guidebook are well-established models that are commonly used for
software development projects.

Any lifecycle model can be used with any design methodology, but some fit better than others.
Because most of the lifecycle models were developed before object-oriented design was popular,
they can all be used easily with structured development. If your project will use object-oriented
design, consider how well the lifecycle method will work together with the design methodology.

NASA-GB-8719.13 52



This guidebook makes no recommendation for a specific lifecycle model. Each has its strengths
and weaknesses, and no one model is best for all situations. It is important to intelligently
evaluate the potential lifecycles and select one that best matches the product you are producing.
Standards or organizational policy may dictate a particular lifecycle model. Also, keep in mind
that the familiar may be the best choice, because of reduced uncertainty in how to implement the
process.

4.2.1.1 Waterfall Model

The first publicly documented software development model is the classic Waterfall model. It
was developed to help cope with the increasing complexity of aerospace products. The Waterfall
model is documentation driven and linear (sequential). It is probably the best known of the
lifecycle models.

The Waterfall model is characterized by a strict (more or less) one-way flow structure. It
consists of up to seven phases, each with products and activities. The usual phases are: Concept,
Requirements (Analysis), Design, Implementation (Code), Testing, and Operation
(Maintenance). The Design phase is sometimes broken up into Architectural (high-level) and
Detailed design phases.

Figure 4-1 Waterfall Lifecycle Model

CONCEPT

SYSTEM

SYSTEM ARCHITECTURE DESIGN

SYSTEM DETAILED DESIGN
SYSTEM BUILD

SW CONCEPT SYSTEM ACCEPTANCE

SW REQUIREMENTS
SW DESIGN

SW IMPLEMENTATION

OPERATION
TEST

SW TESTING

The overall system can have a top level Waterfall and the software, hardware, testing, and
operations organizations, groups, or teams may each have their own lifecycle that feeds into and
fits within the overall system lifecycle. Specified activities and deliverables are called out for
each phase and must be approved prior to moving into the next phase.
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Notice that there are clear delineations between the phases of the waterfall lifecycle. All phases
start with deliverable(s) from a previous phase. New deliverables are created and reviewed to
determine if the current phase of the product is properly prepared to move to the next stage. The
product, as its current phase deliverables define it, is usually formally reviewed in either a
system phase review (Systems Requirements Review, System Design Review, Preship Review)
or may have lower level, internal phased reviews in place of, or in addition to, system reviews.

This model is the most widely used and modified because it is graphically, and intellectually,
easy to grasp. The Waterfall lifecycle came from industry where the products are usually
similar, the requirements are known upfront, and the products are created the same way time
after time. The model is seldom, if ever, followed exactly, especially in Research and
Development (R&D) work. Some problems with the waterfall model include:

e Assumption that requirements can be specified up front.
e Assumption that requirements and design do not change significantly (or often).
e No products (other than documentation) delivered until late in the development cycle.

e Team members “blocked” waiting for others to complete dependent tasks.

Variations of the individual phases of the waterfall model are used in most of the other lifecycle
models. Even the deliverables are similar. The main difference is that instead of one monolithic
process, an iterative or repetitive approach is used.

4.2.1.2 Rapid Prototyping

A prototype is a model of a product or system, in part or in whole. Depending on the purpose of
the prototype, and the nature of the product, the prototype will demonstrate various aspects of the
product, such as its interfaces, functionality, and so on. It is used as “Proof of Concept” and as a
means to undergo concept development when no clear approach is immediately evident.

Usually, a portion of a system is prototyped up front (rapidly, with little strict development
discipline) to prove out a possible design feature or technique. Examples include testing out the
feasibility of using web-based interfaces or read/write CD memory instead floppies, getting user
feedback on a graphical interface design, or determining if planned hardware (or a software
algorithm) can produce the required timing.

Rapid prototyping is used in large extent to quickly see if something will work. It is also used at
times to quickly model the basics of an entire system to allow the user to see early on what the
system will be like, what it will do, and how it will operate.

In general the prototype should be built with the “20/80 rule in mind, such that it is usually the
case that 20% of the functions in a system provide 80% of what the user wants. The prototype
should concentrate on these functions, allowing the user to get their specification tied down as
soon as possible. It is possible for the prototype to be a “full” working model, in which case it
can be used in a live situation to see how the software performs, and what real users think of it.
Once the concepts are all worked out and chosen, the final product is specified, designed, built,
tested, and formally released using the information gained from the prototyping stage(s).
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Figure 4-2 Rapid Prototyping
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Problems and pitfalls with this model include:

Customers misunderstand the quality of the prototype. The customer may see what
appears to be a working system, and balk when informed that the system must be
completely rewritten. Explaining the concepts behind rapid prototyping to the customer
up front can help prevent this problem.

Developer or management desire to not “recreate the wheel” leads to the prototype
being used as the basis of the complete system. Sometimes, the prototype appears to
perform so well that it is felt there is no need to build the "real" system. If this happens,
some development organizations will just go ahead and add on the remaining 80% of the
functions without implementing a thorough development process.

Choices made for the prototype may not be applicable for the complete system.
Operating systems, languages, or tools may be chosen to get the prototype done quickly,
but these choices may not be the best for the final system. Evaluation may not be done to
determine what is best, and the original choices may be used without question.

Rapid prototyping is a valuable lifecycle method and should be considered when there is
uncertainty about the best approach, equipment, or interaction. What is learned from rapid
prototyping should be feed into a thorough development process that provides the discipline of
documentation, review, analysis, and thorough testing for a safer, more maintainable, robust
finished product.
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4.2.1.3 Spiral Model

The spiral model combines the idea of iterative development (prototyping) with the systematic,
controlled aspects of the waterfall model. It allows for incremental releases of the product, or
incremental refinement through each time around the spiral. The spiral model also explicitly
includes risk management within software development. Identifying major risks, both technical
and managerial, and determining how to lessen the risk helps keep the software development
process under control.

The spiral model is based on continuous refinement of key products for requirements definition
and analysis, system and software design, and implementation (the code). At each iteration
around the cycle, the products are extensions of an earlier product. This model uses many of the
same phases as the waterfall model, in essentially the same order, separated by planning, risk
assessment, and the building of prototypes and simulations.

Documents are produced when they are required, and the content reflects the information
necessary at that point in the process. All documents will not be created at the beginning of the
process, nor all at the end (hopefully). Like the product they define, the documents are works in
progress. The idea is to have a continuous stream of products produced and available for user
review.

Figure 4-3 Spiral Lifecycle Model
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The spiral lifecycle model allows for elements of the product to be added in when they become
available or known. This assures that there is no conflict with previous requirements and design.
This method is consistent with approaches that have multiple software builds and releases and
allows for making an orderly transition to a maintenance activity. Another positive aspect is that
the spiral model forces early user involvement in the system development effort. For projects
with heavy user interfacing, such as user application programs or instrument interface
applications, such involvement is helpful.

Starting at the center, each turn around the spiral goes through several task regions:
e Determine the objectives, alternatives, and constraints on the new iteration.
e [Evaluate alternatives and identify and resolve risk issues.
e Develop and verify the product for this iteration.
¢ Plan the next iteration.

Note that the requirements activity takes place in multiple sections and in multiple iterations, just
as planning and risk analysis occur in multiple places. Final design, implementation, integration,
and test occur in iteration 4. The spiral can be repeated multiple times for multiple builds.

Using this method of development, some functionality can be delivered to the user faster than the
waterfall method. The spiral method also helps manage risk and uncertainty by allowing
multiple decision points and by explicitly admitting that all of anything cannot be known before
the subsequent activity starts.

4.2.1.4 Incremental Development - Single Delivery

The incremental development - single delivery model is effective for early development of some
of the features of the software. This model enables you to get those efforts that are risky started,
and the concepts tested and accepted, early in the development process. The increments are
developed separately but integrated and delivered as a single system. Figure 4-4 shows the
lifecycle phases of this model.

Note that the model uses the same phases as those in the waterfall model.

4.2.1.5 Incremental Development - Incremental Delivery

Where the Incremental Development — Single Delivery model produced only one deliverable
product (the final version), the Incremental Development — Incremental Delivery model produces
products in stages. This means that the system will have limited but partial functionality for
some period of time. An example would be an application with a Beta release, a Version 1,
Version 2, and so on. This lifecycle may be used if the customer wants some functions delivered
early and can wait for other functions and refinements until later. Figure 4-5 shows the lifecycle
phases of this model.

Note again that this model uses the phases from the waterfall model.
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Figure 4-4 Incremental Development Lifecycle — Single Delivery
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Figure 4-5 Incremental Development Lifecycle — Incremental Delivery
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The emphasis with an incremental delivery life cycle is that you can plan to release
incrementally. This allows the project to focus the resources and efforts accordingly. All too
often a single grand release is planned, but then the schedule slips, resources are not available,
technical difficulties arise, or other problems occur. The project may just ship whatever it has at
the due date, promising a future update to complete the application or fix remaining problems.
Using Incremental Development-Incremental Delivery can help avoid these problems.
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4.2.1.6 Evolutionary Development

In the evolutionary lifecycle model, new or enhanced functions are added to a functioning
system iteratively. Each development cycle builds on the experience from earlier increments,
defining and refining the requirements for subsequent increments. Increments are developed
sequentially, rather than in parallel. Within each incremental development cycle, there is a
normal progression through analysis, design, code, test and implement, followed by operations
and maintenance. Experience with each finished release is incorporated in requirements for the
next development cycle.

From the customers' point of view, the system will "evolve" as increments are delivered over
time. From the developers' point of view, those requirements that are clear at the beginning of
the project will dictate the initial increment, and the requirements for each development cycle
there after will be clarified through the experience of developing prior increments. Care must be
taken to ensure that the evolving system architecture is both efficient and maintainable.

Figure 4-6 Evolutionary Lifecycle Model
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The benefits from using the evolutionary model are:

e Early deliveries of portions of the system, even though some of the requirements are not
yet decided.

e Use of early releases as tools for requirements elicitation.
Limitations of the evolutionary lifecycle model include:

e It may be difficult to estimate costs and schedule at the start of the project when scope
and requirements have not been established.

e The overall elapsed time for the project may be longer than if the scope and requirements
are established before any increments are developed.

e Time apparently gained on the front end of a project because of early releases may be lost
later because of the need for rework resulting from evolving requirements.
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e Additional time must also be planned for integration and regression testing as increments
are developed and added to the system.

o N

.. MR
4.2.2 Design Methodologies ~ 3rés J=

A design is a meaningful engineering representation of something that is to be built. It is a
higher-level interpretation of what will actually be implemented in the source code. Designs
should be traceable back to a customer’s requirements. They should also be assessed for quality
against a set of predefined criteria for a good design.

Analysis and design methods for software have been evolving over the years, each with its
approach to modeling the needed worldview into software. The following methodologies are
most commonly used. Specific methodologies under the main categories are just a sample of
available methodologies.

e Structured Analysis and Structured Design (SA/SD). SA/SD methods were among the
first to be developed. They provided means to create and evaluate a “good” design. Prior
to the introduction of SA/SD processes, “code and debug” was the normal way to go
from requirements to source code. Even in this “object-oriented” time, SA/SD is still
used by many.

o Functional Decomposition
o Data Flow (also called Structured Analysis)
o Information Modeling

e Object Oriented Analysis and Object Oriented Design (OOA/OOD). OOA/OOD breaks
the world into abstract entities called objects, which can contain information (data) and
have associated behavior. OOA/OOD has been around for nearly 30 years. In the last
decade the majority of development projects have shifted to this collection of
methodologies. Object-orientation has brought real benefits to software development, but
it is not a silver bullet.

o Object-Oriented Analysis and Design (OOA/OOD) method (Coad & Yourdon)
o Object Modeling Technique (OMT) (Rumbaugh et. al.)

o Object-Oriented Analysis and Design with Applications (OOADA) (Booch)

o Object-Oriented Software Engineering (OOSE) (Jacobson et. al.)

o UML

e Formal Methods (FM) and Model-based Development. FM is a set of techniques and
tools based on mathematical modeling and formal logic that are used to specify and
verify requirements and designs for computer systems and software. FM is also a process
that allows the logical properties of a computer system (primarily software) to be
predicted (in a process similar to numerical calculation) from a mathematical model of
the system by means of a logical calculation.

o Formal Specification
o Formal Verification

o Software models (with automatic code generation)
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Which design methodology is best? The answer to that question depends on many
project-specific variables. What is the experience base of the software personnel? Is
there time and money, both for training and to absorb project schedule delays as the team
comes up to speed on a new method or language? Has object-oriented or structured
design been used successfully in this problem domain? What external components must
the software interface with? Are there any contractual requirements or standards that
specify or limit the methodology choices? What tools are available to help with a chosen
methodology, and how mature are they? These questions are just some that must be
answered before selecting a design methodology. Advantages and pitfalls for SA/SD,
OOA/OOD, and FM are discussed in the paragraphs below. Think seriously about the
options and choose wisely.
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4.2.2.1 SA/SD

Structured software development is a phrase with multiple meanings. In a general sense, it
applies to all methodologies for creating software in a disciplined, structured manner. In the
context of this section, however, “structured” refers to the various analysis and design methods
that are not object-oriented.

In the following discussion, “analysis” is defined as a process for evaluating a problem space (a
concept or proposed system) and rendering it into requirements that reflect the needs of the
customer. “Design” is the process of taking those requirements and creating the desired system.

Among the structured methods used, the most popular have been Functional Decomposition,
Data Flow (or Structured Analysis), and Information Modeling.

Functional Decomposition focuses on what functions and sub-functions the system needs to
perform and the interfaces between those functions. It is a technique for developing a program
in which the problem is divided into more easily handled sub-problems, the solutions of which
create a solution to the overall problem. Functional decomposition is a “top-down” development
methodology.

Functional decomposition begins with the abstract (the functions the software must perform) and
works toward the particular (algorithmic steps that can be translated directly into code). The
process begins by breaking the functionality into a series of major steps. Each step is then
further decomposed, until a level is reached where a step cannot be reasonably subdivided. The
result is usually a collection of “units” or components that perform a single sub-step of the
process. The relationship between the components is hierarchical.

The general complaints with this method are that:

e The functional capability is what most often changes during the design lifecycle and is
thus very volatile.

e [t is often hard to see the connection between the proposed system as a whole and the
functions determined to create that system.

e Data plays a secondary role in support of actions to be performed.

Structured Analysis (DeMarco [16], Yourdon [15]) became popular in the 1980’s and is still
used by many. The analysis consists of interpreting the system concept (or real world) into data
and control terminology, graphically displayed as data flow diagrams. Data dictionaries describe
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the data, including where and how it is used. A process specification captures the transaction
and transformation information.

The steps to performing a structured analysis are:
e Start with the Data Flow Diagram.
e Determine major flow from input to output.
e Partition into input, central transform, and output processes.
e Convert to high level structure chart.
e Refine.
e Validate using coupling and cohesion.

This methodology has some problems in practical usage. The flow of data and control from
bubble (i.e. processes) to data store to bubble can be very hard to track. Also, the number of
bubbles can get to be extremely large. One approach to avoiding this problem is to first define
events from the outside world that require the system to react, then assign a bubble to that event.
Bubbles that need to interact are then connected until the system is defined. This can be rather
overwhelming, so the bubbles are usually grouped into higher-level bubbles.

The main difficulties in using this method have been:

Choosing bubbles appropriately.

Partitioning those bubbles in a meaningful and mutually agreed upon manner.
The size of the documentation needed to understand the Data Flows.

This method is still strongly functional in nature and thus subject to frequent change.

A S e

Though “data” flow is emphasized, “data” modeling is not. There is little understanding
of just what the subject matter of the system is about.

6. It is hard for the customer to follow how the concept is mapped into these data flows and
bubbles. It is also very hard for the designers who must shift the data flow diagram
organization into a format that can be implemented.

Information Modeling, using entity-relationship diagrams, is really a forerunner for OOA. The
analysis first finds objects in the problem space, describes them with attributes, adds
relationships, refines them into super and sub-types and then defines associative objects. Some
normalization then generally occurs. Information modeling is thought to fall short of true OOA
in that, according to Peter Coad & Edward Yourdon [17],

1. Services or processing requirements for each object are not addressed.
2. Inheritance is not specifically identified.

3. Poor interface structures (messaging) exist between objects.

4

Classification and assembly of the structures are not used as the predominate method for
determining the system’s objects.

Modern structured analysis often combines elements from all three analysis methodologies
(functional decomposition, structured analysis, and information modeling).
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4.2.2.2 004/00D

Object Oriented Analysis and Design (OOA/OQOD) represents the new paradigm for creating
software. OOA/OOD is viewed by many as the best solution to most problems. Like the older
SA/SD, OOA/OOD provides a way to model the real world in a defined, disciplined manner.
OOA actually incorporates structured analysis techniques at a lower level, once the system is
cast into objects or classes with attributes and methods (i.e. functions).

The Object-oriented (OO) paradigm says:
1. Look at your problem in terms of individual, independent objects.

2. Decompose your domain into objects. Each object has some certain properties and a
certain behavior or set of actions particular to each object.

3. Organize your objects so that:

a. They interact among each other by sending messages that may trigger actions on
the object to which they arrive.

b. They are defined in a hierarchical way so that objects in lower levels inherit
automatically all properties and behavior of the objects in upper levels.

c. Objects in lower levels may add or modify the properties or behavior that they
have inherited.

Modeling the real world into objects can have some advantages. This methodology tends to
follow a more natural human thinking process. Also, objects, if properly chosen, are the most
stable perspective of the real world problem space and can be more resilient to change as the
functions/services, data, and commands/messages are isolated and hidden from the overall
system.

For example, while over the course of the development lifecycle the number, as well as

& types, of functions (e.g., turn camera 1 on, download sensor data, ignite starter, fire
engine 3) may change. The basic objects (e.g., cameras, sensors, starter, engines,
operator) needed to create a system usually are constant. That is, while there may now be
three cameras instead of two, the new Camera-3 is just an instance of the basic object
‘camera’. OOA/OOD should not be confused with OO programming languages. While
an OO language is usually chosen to implement the design, it is not required. A
procedural language can be used to implement OOD.

OOA incorporates the principles of abstraction, information hiding, and inheritance, which are
the three most “human” means of classification. These combined principles, if properly applied,
establish a more modular, bounded, stable, and understandable software system. These aspects
of OOA should make a system created under this method more robust and less susceptible to
changes--properties that help create a safer software system design.

Abstraction refers to concentrating on only certain aspects of a complex problem, system, idea,
or situation in order to better comprehend that portion. The perspective of the analyst focuses on
similar characteristics of the system objects that are most important to them. Later, the analyst
can address other objects and their desired attributes or examine the details of an object and deal
with each in more depth. An object is defined by the attributes it has and the functions it
performs on those attributes. An abstraction can be viewed as a simplified description of a
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system that emphasizes some of the system’s details or properties while suppressing others. A
good abstraction is one that emphasizes details that are significant to the reader or user and
suppresses details that are, at least for the moment, immaterial or diversionary.

Information hiding also helps manage complexity in that it allows encapsulation of requirements
that might be subject to change. In addition, it helps to isolate the rest of the system from some
object specific design decisions. Thus, the rest of the software system sees only what is
absolutely necessary for the inner workings of any object.

Inheritance “defines a relationship among classes [objects], wherein one class shares the
structure or behavior defined in one or more classes. Inheritance thus represents a hierarchy of
abstractions, in which a subclass [object] inherits from one or more superclasses [ancestor
objects]. Typically, a subclass augments or redefines the existing structure and behavior of its
superclasses™ [19].

Classification theory states that humans normally organize their thinking by:

e Looking at an object and comparing its attributes to those experienced before (e.g.
looking at a cat, humans tend to think of its size, color, temperament, or other attributes
in relation to past experience with cats)

¢ Distinguishing between an entire object and its component parts (e.g., a rose bush
versus its roots, flowers, leaves, thorns, andstems.)

e C(lassification of objects as distinct and separate groups (e.g., trees, grass, cows, cats,
politicians)

In OOA, the first step is to take the problem space and render it into objects and their attributes
(abstraction). The second step is classifying an object into Assembly Structures, where an object
and its parts are considered. The third step includes organizing the problem space into
Classification Structures. This involves examining the problem space for generalized and
specialized instances of objects (inheritance). The purpose of all this classification is to partition
the system into well-defined boundaries that can be individually and independently understood,
designed, and revised. However, despite “classification theory,” choosing what objects represent
a system is not always that straightforward. In addition, each analyst or designer will have their
own abstraction, or view, of the system which must be resolved. Shlaer and Mellor [87],
Jacobson [88], Booch [19], and Coad and Yourdon [17] each offer a different look at candidate
object classes, as well as other aspects of OOA/OOD. These are all excellent sources for further
introduction (or induction) into OOA and OOD. OOA/OOD provides a structured approach to
software system design and can be very useful in helping to bring about a safer, more reliable
system.

While there is a growing number of OO “gurus” with years of practical experience, many
% OO projects are implemented by those with book-knowledge and little direct experience.
Remember that everything written in the OOA/OOD books are not the only correct way
to do things. Adaptation of standard methods may be important in your environment. As
an example, a team of software designers who worked on the Mars Pathfinder mission
[89] decided to use Object Oriented Design, though their developers had only book-
knowledge of the methodology. Attempting to follow the design methodologies verbatim
led to a rapidly increasingly complex set of objects. The team eventually modified the
design methodology by combining the “bottom up” approach they had been using with a
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more “top down” division into subsystems. The AIPS team [18] found that it took 6
months for structured (procedural) developers to be productive in an object-oriented
environment. Once OO gurus were on the project, new developers progressed more
quickly.

Reference [101] provides a "cookbook," or design guide, to creating software based on use cases,
while stressing software requirements, traceability, and testing. Reference [102] describes the
Dynamic Systems Development Method of software development. DSDM provides a
framework of controls and best practices for Rapid Application Development.

OOA/OQOD is not a silver bullet for software development. Besides the steep learning curve
for those unfamiliar with the methodology, other problems or pitfalls exist. Many software
development organizations have shown a significant increase in productivity when OO
techniques were adopted. However, it is not clear that all the benefits resulted strictly from the
object-oriented philosophy. In some cases, the extra focus on design provided most of the gain.
Also, not all of the promised advantages have come about in practice. Code reuse, touted as a
major benefit of OO methodologies, has not been implemented to the extent originally expected.

Other examples of problems or concerns are:

e Not every problem domain is a candidate for OOD. Real-time or embedded systems,
distributed computing, and rapidly evolving systems, among others, should evaluate
whether OO is the right methodology for the domain.

o It is difficult to determine “objects” for abstract entities. Is wind an object, or the
behavior of an air object?

e Weakness in large-scale reuse and integration. With its focus on small-scale objects,
OOD does not provide sufficient mechanisms to achieve large-scale reuse or integration
of off-the-shelf system components without significant prior planning.

e Weakness in system decomposition. Decomposing the real world into objects or
classes is useful for modeling data-centric aspects of a system. Other decompositions
(e.g., by-feature; by-function) are better for modeling other aspects. Without them,
maintainability, comprehensibility, and reusability suffer.

e Weakness in multi-team and decentralized development. OOD leads to contention
over shared, centralized classes. It forces all developers to agree on a single domain
model, rather than using models more appropriate to their tasks.

¢ OO Testing methods are still an evolving science. At the system level, testing an OO
and structured system is identical. “Unit testing” and “integration testing” for OO
systems differs in some ways from structured or procedural software. The best ways to
test OO software is not well understood yet.

e Changing the OO model for evolving systems is not as easy as claimed. Lubars et al
[21] showed that for one system, the object model was simple to change as the system
evolved, but the behavioral model was much more complex.

Shah et al [20] describes additional pitfalls, both technical and managerial, when moving to
OOD.
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Unified Modeling Language (UML)

UML is a language and methodology for specifying, visualizing, and documenting the
development artifacts (design) of an object-oriented system. The UML represents the unification
of the Booch, Objectory, and OMT (spell) methods and is their direct and upwardly compatible
successor. It also incorporates ideas from many other methodologists, including Coad, Gamma,
Mellor, Shlaer, and Yourdon.

UML uses a variety of diagrams and charts to show the structure and relationships of an object-
oriented design. Class diagrams show the individual classes and how they relate to each other,
e.g. subclass, superclass, or contained within another class. Each class box can contain some or
all of the attributes (data) and operations (methods) of the class.

Relationships among classes come from the following set:
e Associations between classes means that they communicate via messages (calling each
other’s methods).
e Aggregations are a specialized association, where one class “owns” the other.
e Compositions show that one class is included within another class.
¢ Generalizations represent an inheritance relationship between the classes.

¢ Dependencies are similar to associations, but while one class depends on another, it does
not contain a pointer or reference to the other class.

e Realizations are relationships where one modeling element is the implementation
(realization) of another.

Features of UML Types of diagrams
Use cases and scenarios Use-case diagrams
Object and class models Class diagrams
State charts and other behavioral specifications State-machine diagrams
Large-scale structuring Message-trace diagrams
Design patterns Object-message diagrams
Extensibility mechanisms Process diagrams
Module diagrams
Platform diagram

UML is quickly becoming the standard OO modeling language. Tools already incorporate it,
and some can even generate code directly from the UML diagrams. UML has been adapted for
real-time systems. Many books now exist for learning UML, as well as on applying UML to
specific environments or integrating it with other design methodologies.

4.2.2.3 Formal Methods (FM)

The NASA Formal Methods Guidebook [22] states: “Formal Methods (FM) consists of a set of
techniques and tools based on mathematical modeling and formal logic that are used to specify
and verify requirements and designs for computer systems and software.” Formal Methods
therefore has two parts — formal specification and formal verification.
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Software and system requirements are usually written in “human-readable” language. This can
lead to ambiguity, when a statement that is clear to one person is interpreted differently by
another. To avoid this ambiguity, requirements can be written in a formal, mathematical
language. This formal specification is the first step in applying FM.

Formal verification provides the proof that the result (software) meets the formal specification.
Verification is a progressive activity. At each stage, the new product is formally verified to be
consistent with the previous product. For example, the detailed design is verified against the
preliminary design, which was verified against the desired properties such as safety or security.

In the production of safety-critical systems or systems that require high assurance, FM provides a
methodology that gives the highest degree of assurance for a trustworthy software system. FM
has been used with success on NASA, military, and commercial systems that were considered
safety-critical applications. The benefits from the application of the methodology accrue to both
safety and non-safety areas. FM does not guarantee a precise quantifiable level of reliability. At
present, FM is only acknowledged as producing systems that provide a high level of assurance.

FM is used in several ways:
a. As away to assure the software after-the-fact
b. As a way to assure the software in parallel.
c. Asaway to develop the software.

“After the fact” software verification can increase the confidence in a safety-critical system.
When the regular software development is completed, then the formal specification and
verification begin. The Software Assurance, Safety, or IV&V engineer converts the “human
readable” requirements into a formal specification and proves properties about the specification.
The code that implements the system may also be formally verified to be consistent with the
formal specification. With this approach, two separate development activities occur, increasing
cost and schedule. In addition, problems found at this late stage are costly to fix.

“In parallel” software verification still uses two separate teams (software development and FM
verification), but they operate in parallel during the whole process. The development team uses
the regular practices of good software development. At the same time the FM team writes
formal specifications for the system and verifies them. While still costly, this method of assuring
the software allows for quicker development. Software errors are found earlier in the
development cycle when they are less expensive to correct. However, communication between
the two teams is vital for this approach to work.

Rather than two teams working in parallel, the software can be developed using FM exclusively.
This is an integrated approach. Requirements and design are written in a formal language. The
design is formally verified before code is generated. This method is the least costly of the three,
though the developers must be trained in FM for it to work.

FM has not gained a wide acceptance among all industries, mostly due to the difficulty of
the formal proofs. A considerable learning curve must be surmounted for newcomers,
% which can be expensive. Once this hurdle is surmounted successfully, some users find
that it can reduce overall development lifecycle cost by eliminating many costly defects
prior to coding. In addition, many tools are now available to aid in using FM. Also, the
process of creating a formal specification, even without the mathematical proofs, can be
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invaluable. Removing ambiguity and uncertainty from the specification helps to prevent
future errors when that specification is implemented.

Lutz and Ampo [23] described their successful experience using formal specification and
verification at the requirements level. As a result of the Formal Specification, 37 issues were
found in the requirements, including undocumented assumptions, inadequate off-nominal or
boundary case behavior, traceability and inconsistency, imprecise terminology and logic errors.
The project being used as a test subject was following an Object-oriented (OO) development
process. FM worked well with the OO approach.

A new approach to “light” formal methods is the SpecTRM modeling language [109]. This
language is human-readable and supports a safety-driven design process. “Under the hood” of
the modeling language is a formal (mathematical) basis that supports formal and even automated
analysis. In addition, the models can be executed, allowing dynamic analysis of the specified
system's behavior before any code is written. The design of the formal modeling language
emphasizes readability so it can serve as a model and as the specification of the software
requirements.

Detailed descriptions of FM are given in the NASA Formal Methods Guidebook [22]. In
addition, the following publications are recommended reading as primers in FM: Rushby [24],
Miller, et al [25], and Butler, et al [26]. Anthony Hall [27] gives “Seven Myths of Formal
Methods,” and discusses using formal specification of requirements without formal proofs in a
real-world development environment. Richard Kemmerer [28] shows how to integrate FM with
the development process.

The NASA Langley Formal Methods Group website (http://atb-
www.larc.nasa.gov/fm/index.html) provides good general information on the what and why of
FM. This website also provides links for more information. The NASA FM page is
http://eis.jpl.nasa.gov/quality/Formal_Methods/home.html.

A quick search of the Internet produces links to many FM tools. The web-site
http://www.afm.sbu.ac.uk has a list of notations and tools, as well as other resources. The FM
page produced by Jonathan Bowen (http://www.afm.sbu.ac.uk/) also contains resources and tool
information.

The following list contains some of the tools available for FM. Links to these can be found
through the above URLSs or via a search of the World Wide Web.

e Theorem provers (ACL2, Boyer-Moore, HOL, Isabelle, JAPE, leant, LEGO, Nqthm,
Otter, PVS, RRL, and SteP).

e Specification languages and formal notations (Z, SDL, Algebraic Design Language
(ADL), Calculus of Communicating Systems (CCS), Estelle, Esterel, Larch, LUSTRE,
Murphi, OBJ and TAM.

e Methods and Systems (B-Method, Circal, Evolving Algebras, KIV, LOTOS, Penelope,
Refinement Calculus, RESOLVE, and VDM).

e Others (ASLAN, Binary Decision Diagrams, NP-Tools, Nuprl, PVS, Specware, HyTech
for embedded systems, LAMBDA for hardware/software co-design, Maintainer’s
Assistant for re-engineering code, UNITY for parallel and distributed programs, and Trio,
Kronos, TTM/RTTL, and UPPAAL for real-time systems).
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4.2.2.4 Model-based Software Development

Model-based software development focuses on creating a complete (and possibly formal) model
of the software system. Models are an abstract and high level description of the system,
expressed as statements in some modeling language or as elements in a modeling tool. Unlike
standard design documents, models can be executable (able to simulate the process flow within
the system).

The standard “requirements—design—code—unit, integration, and system test” development
cycle becomes “requirements—model—verify (test) and debug—generate code—system test”.
Unit and software integration testing is pushed up in the life cycle to the modeling phase. In
theory, the model-driven approach allows developers to construct, test, and analyze their designs
before they write any code.

When the model is formally defined, it becomes “formal methods™ (section 4.2.2.3). Another
growing trend in software engineering is to use the Unified Modeling Language (UML, section
4.2.2.2) to describe the system. In many cases, tools can take the developed model and
automatically generate the source code.

One advantage of model-based development is moving some of the testing activities earlier in
the life cycle. If major problems are found, they can be resolved with less impact on the budget
or schedule of the project. Disadvantages include a reliance on the automatically generated
source code (which may not be generated correctly) and the difficulty of knowing how well the
model conforms to reality. Interactions between parts of the system may not be evident until the
system is operational. Testing on the model should not replace thorough system testing.

4.2.2.5 Design Patterns

In software engineering, the wheel is reinvented on a regular basis. Creating reusable software
components is one way to avoid that reinvention process. Design patterns are another. Unlike
reusable software, however, design patterns are not things (software components) but ideas.
They are proven solutions to recurring problems in software engineering.

The idea of software patterns derives from several sources: an architectural design movement
conceived by Christopher Alexander, the literate programming’ concepts, and the documentation
of best practices and lessons learned in all vocations. Software engineering solutions to a
problem are usually specific to the context of a particular system. A pattern is a generalization
from the specific solutions that captures the essential insight into the problem solution, as well as
the context-specific elements. Or, more succinctly, “a pattern is a named nugget of insight that
conveys the essence of a proven solution to a recurring problem within a certain context amidst
competing concerns”. [95]

Software patterns are given names, which then become part of the vocabulary of software
engineering. One of the software patterns community’s goals is to create a body of literature to
help software developers resolve recurring problems encountered throughout all of software
development. Patterns provide a shared language for communicating insight and experience
about these problems and their solutions. Formally codifying these solutions and their
relationships captures this body of knowledge. The primary focus of the patterns community is

® Literate programming is a phrase coined by Donald Knuth to describe the approach of developing
computer programs from the perspective of a report or prose. Literate programming is the combination of
documentation and source together in a fashion suited for reading by human beings. [91]
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not so much on technology as it is on creating a culture to document and support sound
engineering architecture and design.

Patterns have been used for many different domains, including organizations, processes, teaching
and architecture. At present, the software engineering community is using patterns largely for
software architecture and design, and (more recently) software development processes and
organizations.

Software patterns have four basic elements:
1. Pattern name.

2. Problem description. This explains the problem and its context, conditions that must be
met, and when to apply the pattern.

3. Solution. This describes the elements that make up the design, their relationships,
responsibilities, and collaborations.

4. Consequences. The results and trade-offs of applying the pattern, often program space
and execution time trade-offs.

Patterns provide proven solutions to specific problems where the solution is usually not obvious.
The best patterns generate a solution to a problem indirectly. Patterns describe deeper system
structures and mechanisms, rather than modules. Good patterns do more than just identify a
solution; they also explain why the solution is needed.

Resources for software patterns include:

e Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides, October 1994, ISBN 0-201-63361-2.

e Pattern-Oriented Software Architecture: A System of Patterns by Frank Buschmann,
Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal, 1996, ISBN 0-471-
95869-7.

e Pattern Languages of Program Design (and follow-on volumes) contain selected
papers from the conference on Patterns Languages of Program Design. Addison-Wesley
published the first volume in 1995.

e Patterns home page, http://www.hillside.net/patterns/patterns.htm.

e Portland Pattern Repository, http://c2.com/ppr/index.html.

4.3 Managing the Process % &

All software development must be managed if it is to be successful. The degree of management
and documentation varies with the complexity and size of the project. A large, software-
intensive project may require a full-fledged, formal program whose details are found in a specific
Software Management Plan. A Software Management Plan describes the necessary software
tasks, processes, methodologies, reviews, configuration management approach, reporting,
documentation, and other elements of software management. A small software project, without
much criticality, will have a tailored process that does not overburden the project. The software
processes for a small project will usually be described inside a System Management Plan, rather
than in separate documents.
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- Categorizing the project’s software and selecting the range of activities to perform must

&k be negotiated early in the system development. Project management, software

“=  developers, software assurance engineers, and software and/or systems safety engineers
will be involved in the negotiations.

First and foremost, everyone needs to agree on the degree of safety-criticality of the software.
The level is based on several factors ranging from control over hazardous hardware to visibility
of the system (and therefore a failure) to the outside world. Chapter 3 describes how to
determine the safety-criticality of the software.

Starting a project with varying understandings of the criticality of the software system will
usually lead to problems down the road. The project manager does not want to have this issue
raised repeatedly throughout the development period, as developers and software assurance
continue to argue over the criticality of individual sections or the software as a whole.

Along with the criticality level, the development and safety activities need to be negotiated.
Tailoring the activities to the criticality level (risk index) is discussed in section 3.2. Further
tailoring information is provided in the “Tailoring Guidelines” sections of Chapters 5 through 10.

Determining who will perform an activity is as important as what tasks will be

% implemented. This is another area for negotiation, especially when there is no designated
software safety engineer. Team members may wear different “hats” at various times.
The project manager should distribute the tasks according to the expertise and talents of
the team members, keeping in mind that some activities may require a certain amount of
independence from the development team.

Part of managing a safety-critical project includes selecting the right team. Experience
and successful past performance with similar efforts are prerequisites to developing
dependable safety-critical software.

NASA’s Software Engineering Initiative Implementation Plan, from the Office of the
Chief Engineer, sets out four strategies to improve software engineering practices,
especially in cost and schedule predictability, reliability, quality, and cost. This plan (and
NPG 2820 (pending) require all NASA Centers to implement software process
improvement that will bring the software development up to (or equivalent to) SW-CMM
(Software Capability Maturity Mode) or CMMI level 3. Section 4.3.8 discusses the SW-
CMM and other process improvement frameworks.

4.3.1 Project Management Best Practices %

The focus of this guidebook is on producing safe software. The project manager is one of those
responsible for making sure the software produced is safe, and meets all the other requirements.
As Section 11.9 points out, the human element is important in meeting the goal of safety.

While a treatise on all aspects of project management is outside the scope of this guidebook, the
following list gives an overview of important practices. The list is found on the Software
Program Managers Network website (http://www.spmn.com/16CSP.html).
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The Airlie Software Council identified nine Principal Best Practices observed in industry and
deemed essential for nearly all DoD software development projects. (This list has now been
updated to 16 software practices, and is available through the link above.)

Formal Risk Management. Risk management is vital to the success of any software
effort. A formal risk management process requires that risks be identified and accepted
(with whatever mitigations are determined to be necessary or prudent), and necessary
resources be committed to the project. Formal processes for identifying, monitoring, and
managing risk must be used.

Agreement on Interfaces. To deal with the chronic problem of vague, inaccurate, and
untestable specifications, the Council proposed that a baseline user interface must be
agreed upon before the beginning of implementation activities and be included as an
integral part of the system specification. For those projects developing both hardware
and software, a separate software specification must be written with an explicit and
complete interface description.

Formal Inspections. Inspections should be conducted on requirements, architecture,
designs at all levels (particularly detailed design), on code prior to unit test, and on test
plans.

Metric-based Scheduling and Management. Statistical quality control and schedules
should be maintained. This requires early calculation of size metrics, projection of costs
and schedules from empirical patterns, and tracking of project status through the use of
metrics. Use of a parametric analyzer or other automated projection tool is also
recommended.

Binary Quality Gates at the Inch-Pebble Level. Completion of each task in the lowest-
level activity network needs to be defined by an objective binary indication. These
completion events should be in the form of gates that assess either the quality of the
products produced, or the adequacy and completeness of the finished process. Gates may
take the form of technical reviews, completion of a specific set of tests which integrate or
qualify software components, demonstrations, or project audits.

Program-wide Visibility of Progress vs. Plan. The core indicators of project health or
dysfunction should be made readily available to all project participants. Anonymous
channel feedback should be encouraged to enable unfavorable news to move freely up
and down the project hierarchy.

Defect Tracking Against Quality Targets. Defects should be tracked formally at each
project phase or activity. Configuration management (CM), or a form of Problem
Reporting or Defect Management, allows each defect to be recorded and traced through
to removal.

Configuration Management (CM). The discipline of CM is vital to the success of any
software effort. CM is an integrated process for identifying, documenting, monitoring,
evaluating, controlling, and approving all changes made during the life-cycle of the
program for information that is shared by more than one individual or organization.

People-aware Management Accountability. Management must be accountable for
staffing qualified people (those with domain knowledge and similar experience in
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previously successful projects) as well as for fostering an environment conducive to high
morale and low voluntary staff turnover.

More information on project management can be found in the NASA Software Management
Guide [13]. Additional information on project management can be found at:

e Project Management Institute — http://www.pmi.org

e Project manager http://www.project-manager.com/

e ALLPM - The Project Manager's Homepage http://www.allpm.com

e Center for Project Excellence — http://projectexcellence.com

e Michael Greer's Project Management Resources — http://www.michaelgreer.com

4.3.2 Requirements

Requirements solicitation, analysis, and management are key elements of a successful and safe
software development process. Many of the costly and critical system failures that are attributed
to software can ultimately be traced back to missing, incorrect, misunderstood, or incompatible
requirements.

Figure 4-7 Sources of Software Requirements
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Software requirements are not delivered by the stork, but flow down from many sources,
including:

e System Requirements (Specification)
e Safety and Security Standards

e Hazard and Risk Analyses

e System Constraints

e Customer Input

e Software Safety “Best Practices”

Analyses described in Chapter 6 describe methods for assuring that all these requirements,
especially safety requirements, are in the software specification (requirements document).

Most people will think to look for requirements among the system specification, safety
standards, and the potential hazards or risks. What may be overlooked are system
constraints, such as activities the hardware must not do or limitations in sensor precision.
These constraints need to be identified and verified as early as possible. When
constraints are found to be more limiting as the system is built (such as motor speed
being less than expected), software will usually be asked to compensate. It is in the
software developer’s best interest to determine what items might constrain the software,
and at least make sure the issues are being tracked.

Another overlooked area is security. With more systems able to access a network, or be

% controlled over one, making sure that only authorized users can affect the system is a
requirement. Command authentication schemes may be necessary for network-controlled
systems. Access to the system may be inadvertent or malicious, but either needs to be
prevented or, in worst case, contained.

Software safety “best practices” (also sometimes called generic requirements) should also be
considered when deriving the software requirements. Building in error handling, fault or
failure detection and recovery, or having the program terminate in a safe state is an obvious
“best practice.”. Other examples are:

e Notifying controller when automated safety-critical process is executed.
e Requiring hazardous commands to involve multiple, independent steps to execute.

e Requiring hazardous commands or data to differ from non-hazardous commands by
multiple bits.

e Making the current state of all inhibits available to controller (human or executive
program).

e Ensuring unused code cannot cause a hazard if executed.

All requirements must be specified and analyzed to insure completeness (to the extent possible),
clarity, and verifiability of the desired functions and performance. In addition, the software
system must be evaluated to determine if any of it is safety-critical or has safety-critical
characteristics. Top-down analyses, such as Software Fault Tree Analysis, are often used to
identify safety-critical software. = Any safety-critical characteristics found during the
requirements analyses should be written into the software and system requirements.
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Requirements must be managed. They must be traced all the way through the development
process into the final test cases. The process of requirements management is described in
Section 6.4.

Once the requirements are known, it is possible to create the system and acceptance test plans.
Even if the plans are not completed at this stage (depending on the lifecycle chosen), beginning
the process may help identify ambiguous or confusing requirements. In addition, special safety
tests may need to be conducted as part of the safety verification process. These can be separate
tests or be included as one of the system tests.

Chapter 6 discusses requirements development and analysis in more detail.

o
s
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4.3.3 Design

The process of design provides the structure for converting the requirements into the final code.
Where the requirements state what must be done, the design provides zow it will be done. Many
requirements may be implemented in multiple ways. Design selects just one approach.

The process for designing software for safety-critical systems includes:

= Identify design features and methods. The design process identifies design features
and methods (object/class choice, data hiding, functional distribution, etc.), including
safety features (e.g., inhibits, traps, interlocks, and assertions) that will be used
throughout the software to implement the software requirements.

= Allocate all software requirements to the software design. Each requirement is
implemented in a portion of the design, though design features may include more than
one requirement.

= Identify safety-critical computer software components. Any component of the
software that implements a safety-critical requirement is flagged as safety-critical.

= Perform design analyses to assure feasibility and functionality. Analyses should be
performed as early as possible to verify that the design can meet its requirements.

= Perform a safety analysis of the design. Safety analyses identify potential hazards.
Bottom-up analyses, such as Software Failure Modes and Effects Analysis, are often
used. They may be combined with top-down analyses for a thorough look at the software
system. Each safety-critical component is analyzed to verify that it does not cause or
contribute to a hazard. All components must be reviewed to verify that a non-critical
component cannot affect safety-critical components.  Data, sequencing, timing
constraints, and other means of influencing safety-critical components should not be
overlooked.

= Develop and review software integration test plans; update system and acceptance
test plans. Integration testing deals with how the software components will be
incorporated into the final software system and what will be tested at each integration
step. When developing these plans, it is important to think about how the safety features
can be tested. Some may be able to be verified at a high level (system testing), others at a
low level (unit testing), and some during a particular stage of the integration.
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The Design phase may be divided into architectural and detailed design phases. Architectural
design is the high level design, where many components are undeveloped black boxes. The
Detailed Design phase fills in the blanks. The level of analysis possible will vary with the details
available. Some analyses can be started early and then updated as more detail is added. Others
cannot begin until the design is nearly complete.

During Design, the operating system and development language are usually chosen. Tools such
as compilers and editors are chosen. These decisions can have a significant impact on the safety
of the software. Sections 11.1 and 11.2 discuss issues to consider when selecting these elements
in a safety-critical system.

Chapter 7 discusses design development and analysis in more detail.

4.3.4 Implementation

Implementation (coding) is the process of taking the design and translating it into a specific
programming language. For a detailed design, the act of implementation is usually very
straightforward. When working from a higher-level design, implementation will involve non-
structured design steps, often performed in the mind of the programmer. Leaving key design
decisions to a lower-level programmer is not recommended for safety-critical software. Safety-
critical components must be well designed before being created in code.

It is during software implementation that software controls of safety hazards are actually
implemented. All the requirements should have been passed down through the design(s) to the
coding level. Managers and software designers must communicate all issues relating to the
program and components they assign to programmers. Safety-critical designs and coding
assignments should be clearly identified. Programmers must recognize not only the explicit
safety-related design elements but should also be cognizant of the types of errors that can be
introduced into non-safety-critical code that can compromise safety controls. Coding checklists
should be provided to alert for these common errors.

Unit level testing begins during the software implementation phase. Each unit is tested
individually to verify correct functionality. The amount of unit testing is one of the negotiable
elements in a safety program. Remember, however, that units often cannot be thoroughly tested
during integration because individual component level inputs and outputs are no longer
accessible. Unit level testing can identify implementation problems that require changes to the
software. For these reasons, unit level testing must be mostly completed prior to software
integration.

Chapter 8 discusses implementation and code analysis in more detail.

4.3.5 Testing

Testing is the operational execution of a software component in a real or simulated environment.
Testing serves several purposes: to find defects, to validate the system or an element of the
system, and to verify functionality, performance, and safety requirements. The focus of testing is
often on the verification and validation aspects. However, defect detection is probably the most
important aspect of testing. While you cannot test quality into the software, you can certainly
work to remove as many defects as possible.
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Various types of testing can be done. Unit testing exercises individual components in isolation.
Integration testing occurs while the system is being assembled and focuses on interface
verification and component interaction. System testing comprises a range of tests that are
performed when the software is completely integrated. Functionality, performance, load, stress,
safety, and acceptance testing are just a few of the kinds of system tests.

Some basic principles of testing are:

%
%

All tests should be traceable to the requirements and all requirements should be tested.

Tests should be planned before testing begins. Test planning can occur as soon as the
relevant stage has been completed. System test planning can start when the requirements
document is complete.

The “80/20” principle applies to software testing. In general, 80 percent of errors can be
traced back to 20 percent of the components. Anything you can do ahead of time to
identify components likely to fall in that 20 percent (e.g. high risk, complex, many
interfaces, demanding timing constraints) will help focus the testing effort for better
results.

Start small and then integrate into larger system. Finding defects deep in the code is
difficult to do at the system level. Such defects are easier to uncover at the unit level.

You can’t test everything. Exhaustive testing cannot be done except for the most trivial
of systems. However, a well-planned testing effort can test all parts of the system.
Missing logic paths or branches may mean missing important defects, so test coverage
should be determined.

Testing by an independent party is most effective. It is hard for developers to see their
own bugs. While unit tests are usually written and run by the developer, it is a good idea
to have a fellow team member review the tests. A separate testing group will usually
perform the other tests. An independent viewpoint helps find defects, which is the goal
of testing.

Scheduling testing phases is always an art, and depends on the expected quality of the
software product. Relatively defect free software passes through testing within a minimal
time frame. An inordinate amount of resources can be expended testing buggy software.
Previous history, either of the development team or similar projects, can help determine how
long testing will take. Some methods (such as error seeding and Halstead’s defect metric)
exist for estimating defect density (number of defects per unit of code) when historical
information is not available.

Chapter 9 discusses testing and test analysis in more detail.

4.3.6 Products from the Development Process % & o

9

A collection of products will be produced as a result of the software development
process. Products include plans, diagrams, reports, procedures, code, and other items.
The exact complement of products will be determined during the tailoring process early
in the project. Tailoring will not only select the products to be produced, but the level of
detail that must be contained in the document or other artifacts. The size and criticality
of the software project will determine what documents need to be created. For smaller
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projects, many of the documents can be combined, or the software sections can be part of
a system-wide document.

Documentation is quite often the last thing on the software developer’s mind. On many
projects, the documentation follows the completion of the code instead of preceding it.

7% On others, the documents are produced and then promptly ignored. These management

problems need to be addressed. Having a tailored document set is a start. Making sure
that usability is a prime factor within the documents will also help.

Products that may be created during the software development process include:

Requirements, including specifications, traceability matrices, and use case diagrams.

Design, usually including a written document, but also diagrams (such as UML) and
notes. It is important to document why a particular approach was taken, to guard against
problems if the designer leaves, new requirements force design changes, or if
maintenance or upgrades lead to a change many years down the road.

Code. Well commented source code, as well as any files required to build the system.

Milestone Reviews. Many projects have major reviews at predefined milestones. One
beneficial outcome is making sure required documentation is completed by the review.
The reviews also allow others from different disciplines within the team to see what is
being considered. In addition, outside experts may also be present to point out problems
or suggest areas for further work.

Inspection Reports from formal inspections.

Analyses Reports from various development and safety analyses performed. Analyses
are performed by the software developer, software assurance engineer, and software
safety engineer throughout the development process. The following describes some of
the analyses that may be performed:

o Software Requirements Analysis verifies that all requirements for the software
were properly flowed down, and that they are correct, consistent, complete,
unambiguous, and verifiable.

o Design Analyses look at feasibility, timing, interfaces, interdependence of
components, and other areas of concern. Chapter 7 describes many of the
analyses performed at this stage of development.

o Code Analysis verifies that the coded program correctly implements the verified
design and does not violate safety requirements. Traceability from the code back
to the requirements will be verified by analysis.

o Test Analysis includes two types of analyses: 1) analyses before the fact to
ensure validity of the tests, and 2) analyses of the test results.

Plans. Some plans that will be developed for all safety-critical systems are:

o System Safety Plan. This plan should include software as a subsystem and
identify tasks associated with developing and assuring the safety-critical software.

o Software Concepts Document. This document identifies technically challenging
areas and any safety-critical processes.
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4.3.7

o Software Management Plan. This plan documents what management processes
will be used to oversee the software development. Items to be included are work
breakdown structure, budget, schedule, and resource allocation. Coordination of
development with systems or software safety tasks should also be addressed here.
How requirements, especially safety-critical requirements, will be managed may
be addressed here or in the Software Development Plan.

o Software Configuration Management Plan. All software products, which
includes far more than just code, must be configuration managed. Old files in a
software build are a notorious problem, as are lost updates and other problems
with changed files. This plan specifies what will be under configuration
management (CM), what CM system will be used, and the process for moving an
item into or out of the CM system.

o Software Development Plan. This plan defines the process and activities used
by the developers in the creation of the software. Lifecycle, methodology, use of
prototypes, products to be produced, integration strategy, reviews to perform, and
baselines or increment descriptions are some of the items to include. The required
support environment for development or integration is also described in this plan.

o Software Security Plan. The plan addresses the security of safety-critical
software as well as other security issues.

o Software Assurance Plan. Also called a Software Quality Assurance Plan. This
plan describes how the software products will be assured and what the Software
Assurance engineer’s tasks will be. Areas to address include support to software
safety, verification of software safety requirements, and safety and software
assurance engineer participation in software reviews and inspections.

Management Reports, such as work breakdown structure, schedule, or budget.

Software Assurance Records, including process audit reports, document review notes,
and Functional Configuration and Physical Configuration Audit reports.

Test Verification Reports detailing the results of testing (unit, integration, system,
acceptance, or safety).

Problem or Anomaly Reports describing unexpected behavior of the software or
system, the analysis performed to determine the cause, and what was done to correct the
problem. Projects usually have a formal system for problem reports after the software
has reached a level of maturity. However, defects or problems that occur before this time
are also important. Tracking these problems, or at least reviewing them to make sure no
major defect slips through, is recommended in safety-critical systems.

Metrics, such as number of defects found by an inspection or percent of design complete.

Other Documents as negotiated during the tailoring process.

Managing Object-Oriented Projects %

While most of the tasks of project management are divorced from the type of software
development, object-oriented (OO) software development does add some twists to the process.
Some of the differences are listed below.
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Lifecycle. OO software development is recursive and parallel in nature. The definition of
systems, subsystems, and objects can occur in parallel, rather than sequentially. This does not
map well to the waterfall lifecycle model. Also, a common idea in OO development is a short
interactive cycle of “analyze, design, implement, and test” until the software is complete. This
type of development fits well with lifecycles such as the spiral, incremental development, and
evolutionary development.

Requirements. Some OO methodologies use iterative methods by which the system's
requirements are discovered, captured, documented, and communicated. Each “turn around the
spiral,” for instance, may start with an update to the requirements based on what was learned in
the last iteration. It should be noted, however, that many OOD methods are non-iterative as well.

Planning. A significant difference between object-oriented and traditional software projects is
the regularly repeated delivery (through the point of actual coding and testing) of a portion of the
end-product's functionality. Plans for object-oriented projects may have to reflect multiple
iterations, with the quantity varying based on size and complexity of the project. A suggested
limitation to the number of iterations per lifecycle phase is three. [106]

Reusability. As one of the principal goals of OO software development is reusability, project
managers may find it useful to identify a separate timeline for identifying reusable components.
Furthermore, project plans for object-oriented projects may be treated as a reusable set of
artifacts, which should have schedule and staffing templates that can be adapted to many
different projects.

Estimating. Estimating schedules is often difficult, especially if your organization or project
manager has little experience with OO projects. One of the aspects to consider when defining
the schedule is the number of iterations an object will require. Simple objects can be designed,
implemented, and tested in one iteration. Complex and critical objects will require several
iterations to fully define them.

Risk Management. The iterative style of object-oriented projects mitigates several risks, such
as clarifying user requirements up front and pre-testing project feasibility. Regardless, a
proactive approach to risk management needs to be practiced. Risks of using OO include new
technology, new tools, tools that have many defects, and software developer inexperience.

Measuring Progress. Appropriate measures may include the number of key classes, support
classes, and classes per subsystem; number of interface operations, message sends, and nesting
levels; and classes per developer. A particularly useful measure illustrative of object-oriented
engineering is the number of classes reused in a project, determined by counting classes at the
outset of a project and at the end.

Team roles. For an object-oriented software development project team, new professional roles
may be necessary. Some roles to consider are librarians to manage class libraries, library-class
programmers (at the foundation and application levels), application programmers and
prototypers, requirements analysts, implementation designers, modeling experts, and gurus.

Tools. Project management tools (software or “paper and pencil”) are geared toward the
waterfall lifecycle. It is much harder to represent an alternative lifecycle within these tools. One
way to deal with this is to plan multiple iterations of the same set of activities. As each iteration
occurs, less and less time is required for the iteration. This adds an order of magnitude of
complexity to managing an OO project from a project management tool perspective. For a large
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project, managing this additional complexity can be a significant cost. Because project
management tools have not yet evolved to meet the requirements of OO project management;
project managers need to be careful to not let the limitations of the project management tool
control the actual management of the project.

Project Deliverables. OO project design documentation will typically include:

e Object and class specifications.

'f;ﬁ“% ¢ Reusable component information (including past-use and testing information).
e (lass hierarchy and interaction information.
e C(lass interface information (what is visible outside the class).

e Use-cases and UML diagrams. -

[ = |
P

4.3.8 Software Development Capability Frameworks

Several standardized frameworks exist that measure a software development organization’s
process maturity. ISO 9000 and the Software Capability Maturity Model (SW-CMM) are two of
the best known. The concept behind process maturity measurement is that if you follow a well-
structured process in developing your software, that software is more likely to be a quality
product. While this is not always true, such process measurements can provide a way to
compare development organizations (such as for contracts). They also provide a way for an
individual organization to measure improvements within software development.

While process maturity is important, the actual practices the software developer follows are also
essential. Having a well defined but inadequate process may slip by the assessors or auditors,
but it is unlikely to produce good software. It also does no good to have a process that no one
follows because it is too unwieldy, too inflexible, or designed for projects much larger or smaller
than the current one.

Frameworks fall into several types:

e Standards and Guidelines used for contractual purposes. Standards and Guidelines
can be tailored and are often used as recommendations of good practices, if not imposed
as standards.

o MIL-STD-498

o ISO 9000

o DO-178B (aviation safety)
o IEEE 1228

e Process Improvement Models and Internal Appraisal Methods. These frameworks
define characteristics of good process, but not specific implementations. They provide a
roadmap from the current process to the improved process.

o CMM family (SW-CMM, CMMI (integrated SW/Systems Engineering), etc.)

o Systems Engineering Capability Assessment Model (SECAM), International
Council on Systems Engineering
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e Contractor Selection Vehicles. Assessment methods that can be used by an outsider
(e.g. software acquirer) to evaluate a companies software development process. Aids in
selection of software development company, minimizes risk.

o CMM-Based Appraisal for Internal Process Improvement (CBA IPI), associated
with the SW-CMM

Software Capability Evaluation, an external SW-CMM evaluation
Software Development Capability Evaluation (SDCE), US Air Force
Standard CMMI Assessment Method for Process Improvement (SCAMPI)

ISO/IEC TR 15504 (originally Software Process Improvement Capability
dEtermination, or SPICE). Technical report describing assessment method.

O O O O

¢ Quality Awards. Awards given to companies with a high focus on quality. Strict
selection criteria.

o Malcolm Baldrige National Quality Award
o European Quality Award

e Software Engineering Lifecycle Models. Standards that specify elements of a software
development process. Focused more on the “how” of software creation than process
improvement models.

o MIL-STD-498
o IEEE 12207

e Systems Engineering Models. Software is a major element of a system, but it is not the
whole system. Many problems develop when the pieces (hardware, software, operators,
etc.) do not fit together will.

o MIL-STD-499B (Systems Engineering)
o Systems Engineering CMM (SE-CMM) and CMMI (integrated software and

systems CMM)
o SECAM
o IEEE 1220

o Systems Engineering Capability Model (EIA/IS 731)

Understanding how these frameworks fit together is a complicated issue. The Software
Productivity Consortium maintains a website dedicated to showing the relationships among the
quagmire of various frameworks (http://www.software.org/quagmire). The interrelationships are
shown in Figure 4-8, reprinted with permission from the Software Productivity Consortium.

The Capability Maturity Model for Software (SW-CMM) is the most common standard used to
measure a software development organization’s software process capabilities. The SW-CMM
was developed by the Software Engineering Institute at Carnegie Mellon University. Their work
on the SW-CMM was initiated by the US Government’s need to solve a basic problem of
software acquisition -- “Why do all these software projects not work, come in late, and/or cost
too much?”
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Figure 4-8 Development Frameworks Quagmire
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The Software CMM describes the principles and practices underlying software process maturity.
It is intended to help software organizations understand where they are now, and to improve the
maturity of their software processes. The SW-CMM provides an evolutionary path from ad hoc,
chaotic processes to mature, disciplined software processes.

The SW-CMM is organized into five maturity levels:

1. Imitial. The software process is characterized as ad hoc, and occasionally even chaotic.
Few processes are defined, and success depends on individual effort and heroics.
Software products may be quite good (especially with a knowledgeable team), but quality
will vary between teams or products.

2. Repeatable. Basic project management processes are established to track cost, schedule,
and functionality. The necessary processes are in place to repeat earlier successes on
projects with similar applications.

3. Defined. The software process for both management and engineering activities is
documented, standardized, and integrated into a standard software process for the
organization. All projects use an approved, tailored version of the organization's standard
software process for developing and maintaining software.
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4. Managed. Detailed measures of the software process and product quality are collected.
Both the software process and products are quantitatively understood and controlled.

5. Optimizing. Continuous process improvement is enabled by quantitative feedback from
the process and from piloting innovative ideas and technologies.

Figure 4-9 Software Capability Maturity Model
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For each level (except Level 1), key process areas specify where an organization should focus to
improve its software process.

The key process areas (KPA’s) at Level 2 focus on establishing basic project management
controls. They are Requirements Management, Software Project Planning, Software Project
Tracking and Oversight, Software Subcontract Management, Software Quality Assurance, and
Software Configuration Management.

Level 3 addresses both project and organizational issues, as the organization establishes an
infrastructure that institutionalizes effective software engineering and management processes
across all projects. The KPA’s are Organization Process Focus, Organization Process Definition,
Training Program, Integrated Software Management, Software Product Engineering, Inter-group
Coordination, and Peer Reviews.

Level 4 focuses on establishing a quantitative understanding of both the software process and the
software work products being built. The KPA’s are Quantitative Process Management and
Software Quality Management.

The KPA’s at Level 5 cover the issues that both the organization and the projects must address to
implement continual, measurable software process improvement. They are Defect Prevention,
Technology Change Management, and Process Change Management.
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The SW-CMM is an especially important framework. Within NASA, many contracts are now
specifying that the software development company must be CMM level 3. NASA itself is
moving toward implementing a process improvement strategy that will help the Agency achieve
at least the equivalent of CMM level 3. Other organizations are mandating some level of SW-
CMM or CMMI (Integrated Capability Maturity Model), which merges the SW-CMM with the
Systems CMM.

Issues with using SW-CMM or any other process framework to evaluate contractors for software

development are discussed in section 12.2.1.
il

4.3.9 Metrics 'g?}ﬂq..

A measurement is the empirical, objective assignment of a value to a specific attribute. For
example, the number of days to complete a task is a measurement. A metric is a series of
measurements that yield insight into the state of processes or products, and that drives
appropriate action.

Metrics are used to understand a project’s status, a piece of software, or the process of creating
the software, among other things. Metrics can be defined to measure project status and product
quality. They provide insight and patterns that allow the project manager to better manage the
process. They can show when the project is getting out of hand, as well as when everything is
going smoothly.

The first step in good metrics collection is understanding the goal. Do you want to reduce risk
by maintaining the software complexity below a specific threshold? Do you want to keep the
development schedule to within 10% of the desired schedule? Determining the goals will
determine what metrics to use.

A metrics plan should be created to document the goals and associated metrics. The plan should
also detail how the metrics will be used, and what decisions might depend on the metrics.
Having a clear purpose will help reduce the number of measurements collected that are not
actually used.

Collecting metrics is not a “free” activity. In general, collection should be as unobtrusive as
possible and directed toward achieving your goal. Too much data is as problematic as too little
data. [107]

Specific data snapshots have curiosity value, but the real power comes from collecting and
analyzing metrics over time. The goal of analysis is the identification of patterns. Patterns in the
software development for a specific project may point to the need for more training, more
developers, or more time for a particular phase. Patterns outside a specific project may point to
organizational factors that influence projects, for better or for worse.

Once you have analyzed the metric, an action needs to be taken. The action needs to be visible
and congruent, and it must close the feedback loop to the suppliers of the information. Consider
an OO project where many of the developers are new to the OO world. The metrics may show
that the software design is taking more time than expected. They may also show that the
developers with the least OO experience are the slowest. From this pattern, an action must be
generated. Perhaps OO gurus are hired (or moved from another project) to help the developers
who are new to come up to speed.
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For a metrics program to succeed, it is necessary to establish trust, value, communication, and
understanding. Those providing the measurements must agree that the metrics have value. As a
worst-case example, team members who do not understand why the measurements are being
collected and who feel that the data collection is a waste of time may not accurately collect the
measurements, or may even go so far as to “fake” them after the fact.

As a project continues, the metrics plan should be reviewed. [108] Are the metrics used in
decision making? Metrics that are never looked at or that never result in an action should be
discontinued. Are the metrics providing enough information? If not, perhaps additional
measurements need to be added (or new measurements defined to replace those that are currently
collected but not used).

What metrics to measure are determined by what you want to accomplish. The project
management resources listed in section 4.3.1 contain pointers to more information on metrics.
Many of the software engineering websites listed in Appendix A.2 also contain information on
project and software development metrics.

4.4  Tailoring your process @ % & 2

Tailoring the safety effort was discussed in section 3.2. This section looks at tailoring the
software development process. The goal is to do all the necessary work, but only what is
necessary.

There are quite a few elements of software development that can be tailored. In some cases,
tailoring will involve selecting the choice that best suits the project. In others, items will be
added to or subtracted from a particular process.

Before beginning a tailoring exercise, the software developer must consider the scope of the
software under development. The larger, more complex, more critical, and riskier the software
is, the more thorough the development process must be.

Factors that affect the tailoring include:
e Safety and mission criticality.
e Size and complexity.
e Required standards, such as IEEE 12207.
e Cost and schedule risks.
e Innovation and technical risks.

Depending on the software development process chosen, you may need to tailor down (from
“heavyweight” processes) or tailor up (from “lightweight” or agile processes). Processes include
such items as documentation required (or suggested), inspections or reviews, tests to be
conducted, and methods of handling change.

“Development process” and ‘“amount of documentation” are often considered synonymous.
While not strictly true, the development process chosen will often determine the amount of
documentation required and the level of detail necessary.

Lightweight or agile processes, such as Extreme Programming, the Crystal family, Adaptive
Software Development, and SCRUM, were developed partly because the heavyweight processes
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did not fit in an environment with short time-to-market or constantly changing requirements.
Within each methodology are valuable ideas. However, there is a tendency among some
developers to use these processes as an excuse for ad hoc programming and no documentation.
Because of their newness and low rigor, this guidebook does not recommend using agile
processes for the safety-critical elements of your software.

Other issues to consider when tailoring the software development process include:

e Reviews. What reviews (requirements, design, code, or other ) and types of reviews
(formal inspections, code walkthroughs, informal design reviews, etc) will be conducted?
Will the reviews be formal, informal, or a combination? What products are subject to
wider review (outside of the development team)?

¢ Design methodology (structured, OO, FM, or other). What is the history of the project
(e.g. brand new or drawing on a previous project)? Will components be reused from
other projects? If so, how were they developed? Will COTS software be included, and
does it have any impact on the design methodology? What is the expertise of the team
members? Are resources available to train the team in a new methodology? Is the team
comfortable with, or does it have significant experience with, a particular methodology?

e Lifecycle. What lifecycle best fits the project? Does the lifecycle need to be modified?

e Testing. When should testing start? Who will do the testing? What specific tests need
to be conducted? Many possible tests are listed in Chapter 9.

e Tools. What tools should be used to aid the project? Will CASE (Computer Aided
Software Engineering) tools be used? Simulators? Automatic code generators?

e Organization. Are the team members assigned to tasks according to their expertise? Do
senior members of the team handle flowdown of requirements and safety issues? What
should be done to maintain a good working relationship among the team members?

All of the above issues combine to create a tailored process. Each element must work well for
the specific aspect for which it was chosen (client, development organization, schedule,
technology) and work well with each of the other elements of development (the tools, the
organization, lifecycle, method).

“Process Tailoring for Software Project Plans” [29] provides more detail on a tailoring method
that meets the Software Capability Maturity Model (SW-CMM) Level 3 process tailoring and
project planning activities.

4.5 Software Configuration Management % & g

Software Configuration Management (SCM) is often considered a part of project management
and not software development or testing. It is a vital part of the development process, however,
that should not be overlooked. It is very unlikely that you can produce “safe” software without
it. You certainly cannot convince the quality, assurance, or safety personnel that the software is
safe if you have not implemented SCM.

SCM is much more than just version control of source code. It is a process to maintain and
monitor the software development process as well. SCM includes:
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e Identification. Identifying the structure and kinds of components, making them unique
and accessible in some form by giving each component a name, version identification,
and configuration identification.

e Control. Controlling the release of a product and changes to it throughout the lifecycle by
having controls in place that ensure consistent software via the creation of a baseline
product.

e Status Accounting. Recording and reporting the status of components and change
requests, and gathering vital statistics about components in the product.

e Audit and review. Validating the completeness of a product and maintaining consistency
among the components by ensuring that components are in an appropriate state
throughout the entire project life cycle and that the product is a well defined collection of
components.

Be aware of potential problems if you split control of software configuration management (e.g.
having software documents is maintained by a project or company configuration management
group, and the source code version control handled by the programmers). It may be difficult to
keep the documents (e.g. design) synchronized with the code. Someone with configuration
management experience should be “in charge” of the source code, to enforce change control and
comprehensive documentation of changes.

Software Configuration Management is usually performed using a tool (program). However, a
file or folder should be maintained, to collect information that is not in electronic form. This
information could include the design notes scribbled on a napkin or a fax that only exists in
hardcopy. The point is to collect all pertinent information in one place. It is a good idea to
catalog all the hardcopy information in the electronic SCM system, so that it can be found again
when needed.

4.5.1 Change Control

Change control is an important part of developing safe software. Arbitrary changes should be
avoided. Once a piece of software has reached a level of maturity, it should be subject to a
formal change control process. What that level of maturity is will vary by group. It could be
when the component compiles, when the CSCI (which may contain several components) is
completed, or when the whole program is at its first baseline.

Formal change control usually includes a form to request a change (Software Change Request,
Engineering Change Request, or other). The form is filled out by the developer, the customer, or
someone else involved in the project. The form should include both what should be changed and
why. A Change Control Board (CCB), also called an Engineering Review Board, and by other
names, is convened to evaluate the change request. The board consists of several people,
including a representative from the software quality assurance group. When safety is an issue,
someone from safety or risk management should also be included on the board. The requestor
may be at the CCB meeting, or the board may just evaluate the submitted form. The board may
approve the change, reject it, combine it with other requests, or suggest a modification.

Another way software changes occur is through a problem reporting/corrective action (PRACA)
process. A PRACA is issued during the operation of the software, usually during testing. If the
software is not operating as it should, a PRACA is written. The problem report goes to the
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developers, who must find out what the problem is. If the fix to the problem involves a change
to the software, it must go through the CCB.

All the paperwork from the change control process should be archived in the configuration
management system. This includes software requests, PRACA’s, notes from CCB meetings, and
any other pertinent information. The configuration management system provides a repository for
storing this data for later retrieval.

In addition, a cross-index should be created between software changes, requirements, code
component versions, and tests. This could be a database, a spreadsheet, or some other format.
Being able to know what components a software change impacts determines what tests need to
be run. The change may also indicate that a requirement changed, and that the software
requirements document needs to be updated.

4.5.2 Versioning

Versioning is the part of software configuration management that most people think of first. It
involves archiving the source code, keeping previous versions when a new version is added to
the SCM tool. Sometimes a complete previous version is kept; other tools use a “delta”
(difference) from the previous version to the new version.

Each component will have a version number associated with it. A “release” will consist of all
the components and their associated version numbers. Some SCM tools allow branching, where
a release will go down two or more paths (perhaps a “freeware” version and a commercial
enhanced version, for example). Versioning keeps the changes straight and allows “roll back” to
previous versions if a bug is found down the road.

Most SCM tools also have a check-in/check-out policy to prevent changes by multiple
programmers on the same component. Some will allow only one programmer to work on the
component at one time. Other SCM tools will do a “merge” when multiple developers check in
the same component.

One weakness of many SCM tools is that the programmer can get away without good
documentation on what changes were made and why. The tool keeps the changes, but the
reasoning behind it usually is added as a comment upon check-in of the component. (Some tools
force the developer to say something, but not necessarily something useful.) At a minimum,
when a component is changed the following should be done:

e C(learly identify the area of code that is changed (within the source code). Use a
comment with some character string (such as *****) that is easy to spot when flipping
through the source code. Identify the end of the changed area the same way.

e Have a header at the top of the altered code that includes why the change occurred
(change request, problem report, or other reason), what was changed (in English, not
code-ese), when it was changed, and by whom.

¢ Include the what/when/why/who information in the component check-in comment. This
information can be extracted for status accounting (see below).
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4.5.3 Status Accounting

According to MIL-STD-482A, configuration status accounting is the “recording and reporting of
the information that is needed to manage configuration effectively, including a listing of the
approved configuration identification, the status of proposed changes to configuration, and the
implementation status of approved changes.”

Status accounting answers the question "how complete is the software?" Decide what stages of
incompleteness, correctness, and obsoleteness need to be known about each item and to what
audience, give each stage a status name (e.g. draft, under review, ready for integration/delivery,
operational, superseded), and collect the status of each item. Collate the information into a
human-understandable format.

Part of status accounting is the ability to create reports that show the status of each document
(version, whether it is checked-out, when it was last updated, who made the changes, and what
was changed). The status of change requests and problem reports are also included in status
accounting.

While the status information can be compiled by hand, it can be a tedious process. Many tools
exist that provide an integrated configuration management system for all kinds of documents,
including source code, and that can generate the status reports when requested. Some of these
tools are free or low-priced.

The configuration management system needs to be audited occasionally. The audit can be a
formal affair, or an informal look at the system by someone other than the configuration
manager, such as a software assurance engineer or a software quality assurance engineer. The
purpose of the audit is to verify that what the status accounting says about the project is actually
true, and to look for holes in the process that can lead to problems in the future.

4.5.4 Defect Tracking

Defect (bug) tracking is sometimes handled outside of SCM. However, integrating defect
tracking with the SCM process facilitates control of information. (When it is the middle of the
night and you’re trying to find information on a bug you thought you had killed a week ago,
you’ll appreciate a well-ordered system.)

Defect tracking has several purposes. One is to record all the defects for future reference. This
can be simply for historical purposes, or to have something to reference to compare defects
found before. Having defect information from previous projects can be a big plus when
debugging the next project.

Recording the defects allows metrics to be determined. One of the easiest ways to judge whether
a program is ready for serious safety testing is to measure its defect density—the number of
defects per line of code. If testing has found the majority of defects, then the software is likely to
be stable. Safety testing then puts software through its paces, usually by generating error
conditions and verifying graceful behavior by the program.

To determine the defects per lines of code, you need to know two pieces of information, both of
which can be extracted from a good configuration management system: lines of code and number
of defects. You also need a “history” from other projects on defects/lines of code (from your
projects, or general industry numbers). If the average defects/thousand lines of code (KLOC) is
6, and the software is 10,000 lines of code (LOC), then about 60 defects exist in the software. If
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testing has only found 10, a lot more tests need to be done. The software in the example has a
high risk, because many more defects linger in the code.

"«
]
o

4.5.5

One question in defect tracking is whether to use bugs found during unit testing by
developers. It would be best if those defects were documented. The developer can see if
he has a tendency to a certain kind of bug. Other programmers can learn from the
experience of the developer and avoid similar defects.

Metrics from your SCM system %

Monitoring the various elements of your software development project can show when the
project is getting into trouble (cost, schedule, cannot meet delivery date) and can aid in planning
future projects. Items to track, if possible, are:

»*

»*

»*

»*

»*

Lines of code (LOC)* for the project (total).
LOC per component, average component size, distribution of sizes.
Complexity per component, average complexity, distribution of complexities

Estimated and actual time to complete development for a change request or problem
report.

Estimated and actual time to code a component.
Estimated and actual time to unit test a component.
Estimated and actual time for integration tests (black box) and system tests.

Number of defects found per test type. Defects can be categorized for further breakdown.

From these raw inputs, other determinations can be made. For example:

>
»*

»*

4.5.6

Number of defects per LOC for the team or organization.
How good estimations are for completion of a software change.

How much time it takes to unit testing. Correlated with the defects/LOC to see if more or
less time should be spent on unit testing.

How much time to estimate for the various development phases (design, coding, testing)
for the next project.

How much time it will take to update the software for a future change request.

Where to put extra resources in testing. If the majority of the defects are found in system
testing, more time in unit and integration testing may find the defects earlier.

If there was a software development process change, the numbers may show how much
of an improvement the change made.

What to include in the SCM system

Documents and plans (specifications, formal design documents, verification matrix,
presentation packages).

* Function points can be substituted for Lines of Code, or both numbers can be collected.
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4.6

Design information (data flow charts, UML or OOD products, inputs to automatic code
generation programs, and any miscellaneous related information).

Interface information (Interface Control Documents, flow charts, message formats, data
formats).

Source code.

Test cases/scenarios.

Test scripts, for manual or automated testing.
Test reports.

Defect lists (or defect database).

Change requests.

Problem reports/corrective actions

Information for metrics, such as lines of code, number of defects, estimated and actual
start or completion dates, and estimated/actual time to complete a change.

Good Programming Practices for Safety

A good software development process provides a solid foundation for creating safety-critical
software. However, there are many practices that can be incorporated into the design or
implementation that also increase the safety of the software. Some of these are listed below.
The practices come from various sources, which are referenced. In addition, they are
summarized in a checklist in Appendix H.

The following list of good software safety development practices is from “Solving the Software
Safety Paradox” by Doug Brown [30].

CPU self test. If the CPU becomes partially crippled, it is important for the software to
know this. Cosmic Radiation, EMI, electrical discharge, shock, or other effects could
have damaged the CPU. A CPU self-test, usually run at boot time, can verify correct
operations of the processor. If the test fails, then the CPU is faulty, and the software can
go to a safe state.

Guarding against illegal jumps. Filling ROM or RAM with a known pattern,
particularly a halt or illegal instruction, can prevent the program from operating after it
jumps accidentally to unknown memory. On processors that provide traps for illegal
instructions (or a similar exception mechanism), the trap vector could point to a process
to put the system into a safe state.

ROM tests. Prior to executing the software stored in ROM (EEPROM, Flash disk), it is
important to verify its integrity. This is usually done at power-up, after the CPU self test,
and before the software is loaded. However, if the system has the ability to alter its own
programming (EEPROMS or flash memory), then the tests should be run periodically.

Watchdog Timers. Usually implemented in hardware, a watchdog timer resets (reboots)
the CPU if it is not “tickled” within a set period of time. Usually, in a process
implemented as an infinite loop, the watchdog is written to once per loop. In
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multitasking operating systems, using a watchdog is more difficult. Do NOT use an
interrupt to tickle the watchdog. This defeats the purpose of having one, since the
interrupt could still be working while all the real processes are blocked!

Guard against Variable Corruption. Storing multiple copies of critical variables,
especially on different storage media or physically separate memory, is a simple method
for verifying the variables. A comparison is done when the variable is used, using two-
out-of-three voting if they do not agree, or using a default value if no two agree. Also,
critical variables can be grouped, and a CRC used to verify they are not corrupted.

Stack Checks. Checking the stack guards against stack overflow or corruption. By
initializing the stack to a known pattern, a stack monitor function can be used to watch
the amount of available stack space. ~When the stack margin shrinks to some
predetermined limit, an error processing routine can be called that fixes the problem or
puts the system into a safe state.

Program Calculation Checks. Simple checks can be used to give confidence in the
results from calculations.

“30 Pitfalls for Real-Time Software Developers,” by David B. Stewart [31][32] discusses
problems faced by real-time developers. Of the problems he considers, the following are
especially applicable to safety and reliability:

»*

Delays implemented as empty loops. This can create problems (and timing difficulties)
if the code is run on faster or slower machines, or even if recompiled with a newer,
optimizing compiler.

Interactive and incomplete test programs. Tests should be planned and scripted. This
prevents tests from being missed. Also, functional tests should be run after a change, to
make sure that the software change did not indirectly impact other code.

Reusing code not designed for reuse. If the code was not designed for reuse, it may
have interdependencies with other components. Usually, it will not use abstract data
types (if object-oriented) or have a well-defined interface.

One big loop. A single large loop forces all parts of the software to operate at the same
rate. This is usually not desirable.

No analysis of hardware peculiarities before starting software design. Different
processors have peculiarities that can affect the time a calculation can take, or how long it
takes to access an area of memory, for instance. Understanding the hardware before
designing the software will decrease the number of “gotchas™ at integration time.

Fine-grain optimizing during first implementation. “Some programmers foresee
anomalies (some are real, some are mythical). An example of a mythical anomaly is that
multiplication takes much longer than addition.”

Too many inter-component dependencies. To maximize software reusability,
components should not depend on each other in a complex way.

Only a single design diagram. “Most software systems are designed such that the entire
system is defined by a single diagram (or, even worse, none!). When designing software,
getting the entire design on paper is essential.”
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Error detection and handling are an afterthought and implemented through trial
and error. Design in the error detection and handling mechanisms from the start. Tailor
the effort to the level of the code — do not put it everywhere! Look at critical locations
where data needs to be right or areas where the software or hardware is especially
vulnerable to bad input or output.

No memory analysis. Check how much memory your system uses. Estimate it from
your design, so that you can adjust the design if the system is bumping up against its
limits. When trying to decide between two different implementations of the same
concept, knowing the memory usage of each will help in making a decision.

Documentation was written after implementation. Write what you need, and use what
you write. Do not make unnecessarily verbose or lengthy documentation, unless
contractually required. It is better to have short documents that the developers will
actually read and use.

Indiscriminate use of interrupts. Use of interrupts can cause priority inversion in
real-time systems if not implemented carefully. This can lead to timing problems and
the failure to meet necessary deadlines.

No measurements of execution time. ‘“Many programmers who design real-time
systems have no idea of the execution time of any part of their code.”

Bill Wood, in “Software Risk Management for Medical Devices,” Table III [33], gives a list of
mitigation mechanisms for various possible failures. Some of the practices that are not
duplicated in the lists above are summarized below (and expanded upon):

»*

Check variables for reasonableness before use. If the value is out of range, there is a
problem — memory corruption, incorrect calculation, hardware problems (if sensor), or
other problem.

Use execution logging, with independent checking, to find software runaway, illegal
functions, or out-of-sequence execution. If the software must follow a known path
through the components, a check log will uncover problems shortly after they occur.

Come-from checks. For safety-critical components, make sure that the correct previous
component called it, and that it was not called accidentally by a malfunctioning
component.

Test for memory leakage. Instrument the code and run it under load and stress tests.
See how the memory usage changes, and check it against the predicted usage.

Use read-backs to check values. When a value is written to memory, the display, or
hardware, another function should read it back and verify that the correct value was
written.

In addition to the suggestions above, consider doing the following to enhance the software

safety:

Use a simulator or ICE (In-circuit Emulator) system for debugging in embedded
systems. These tools allow the programmer/tester to find some subtle problems more
easily. Combined with some of the techniques described above, they can find memory
access problems and trace back to the statement that generated the error.
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e Reduce complexity. Calculate a complexity metric. Look at components that are very
complex and reduce them if possible. Complexity metrics can be very simple. One way
to calculate McCabe’s Cyclomatic Complexity is to add the number of decisions and
subtract one. An “if”is a 1. A case/switch statement with 3 cases is 2. Add these up and
subtract one. If the complexity is over 10, look at simplifying the routine.

e Design for weak coupling between components (modules, classes, etc.). The more
independent the components are, the fewer undesired side effects there will be later in the
process. “Fixes” when an error is found in testing may create problems because of
misunderstood dependencies between components.

e Consider the stability of the requirements. If the requirements are likely to change,
design as much flexibility as possible into the system.

e Consider compiler optimization carefully. Debuggers may not work well with
optimized code. It is hard to trace from the source code to the optimized object code.
Optimization may change the way the programmer expected the code to operate
(removing “unused” features that are actually used!).

e Be careful if using multi-threaded programs. Developing multi-threaded programs is
notoriously difficult. Subtle program errors can result from unforeseen interactions
among multiple threads. In addition, these errors can be very hard to reproduce since
they often depend on the non-deterministic behavior of the scheduler and the
environment.

e A dependency graph is a valuable software engineering aid. Given such a diagram, it is
easy to identify what parts of the software can be reused, create a strategy for incremental
testing of components, and develop a method to limit error propagation through the entire
system.

e Follow the two person rule. At least two people should be thoroughly familiar with the
design, code, testing and operation of each software component of the system. If one
person leaves the project, someone else understands what is going on.

e Prohibit program patches. During development, patching a program is a bad idea.
Make the changes in the code and recompile instead. During operations, patching may be
a necessity, but the pitfalls should still be carefully considered.

o Keep Interface Control Documents up to date. Out-of-date information usually leads
to one programmer creating a component or unit that will not interface correctly with
another unit. The problem isn’t found until late in the testing phase, when it is expensive
to fix. Besides keeping the documentation up to date, use an agreed-upon method to
inform everyone of the change.

e Create a list of possible hardware failures that may impact the software, if they are
not spelled out in the software requirements document. Have the hardware and systems
engineers review the list. The software must respond properly to these failures. The list
will be invaluable when testing the error handling capabilities of the software. Having a
list also makes explicit what the software can and cannot handle, and unvoiced
assumptions will usually be discovered as the list is reviewed.
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The following programming suggestions are derived from SSP 50038, Computer-Based Control
System Safety Requirements for the International Space Station Program:

Provide separate authorization and separate control functions to initiate a critical or
hazardous function. This includes separate “arm” and “fire” commands for critical
capabilities.

Do not use input/output ports for both critical and non-critical functions.

Provide sufficient difference in addresses between critical I/O ports and non-critical I/O
ports, such that a single address bit failure does not allow access to critical functions or
ports.

Make sure all interrupt priorities and responses are defined. All interrupts should be
initialized to a return, if not used by the software.

Provide for an orderly shutdown (or other acceptable response) upon the detection of
unsafe conditions. The system can revert to a known, predictable, and safe condition
upon detection of an anomaly.

Provide for an orderly system shutdown as the result of a command shutdown, power
interruptions, or other failures. Depending on the hazard, battery (or capacitor) backup
may be required to implement the shutdown when there is a power failure.

Protect against out-of-sequence transmission of safety-critical function messages by
detecting any deviation from the normal sequence of transmission. Revert to a known
safe state when out-of-sequence messages are detected.

Initialize all unused memory locations to a pattern that, if executed as an instruction,
will cause the system to revert to a known safe state.

Hazardous sequences should not be initiated by a single keyboard entry.

Prevent inadvertent entry into a critical routine. Detect such entry if it occurs, and
revert to a known safe state.

Don’t use a stop or halt instruction. The CPU should be always executing, whether
idling or actively processing.

When possible, put safety-critical operational software instructions in nonvolatile
read-only memory.

Don’t use scratch files for storing or transferring safety-critical information between
computers or tasks within a computer.

When safety interlocks are removed or bypassed for a test, the software should verify
the reinstatement of the interlocks at the completion of the testing.

Critical data communicated from one CPU to another should be verified prior to
operational use.

Set a dedicated status flag that is updated between each step of a hazardous operation.
This provides positive feedback of the step within the operation, and confirmation that
the previous steps have been correctly executed.
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e Verify critical commands prior to transmission, and upon reception. It never hurts to
check twice!

e Make sure all flags used are unique and single purpose.

e Put the majority of safety-critical decisions and algorithms in a single (or few) software
development component(s).

e Decision logic using data from hardware or other software components should not be
based on values of all ones or all zeros. Use specific binary patterns to reduce the
likelihood of malfunctioning hardware/software satisfying the decision logic.

e Safety-critical components should have only one entry and one exit point.
e Perform reasonableness checks on all safety-critical inputs.

e Perform a status check of critical system elements prior to executing a potentially
hazardous sequence.

e Always initialize the software into a known safe state. This implies making sure all
variables are set to an initial value, and not the previous value prior to reset.

e Don’t allow the operator to change safety-critical time limits in decision logic.

e When the system is safed, usually in response to an anomalous condition or problem,
provide the current system configuration to the operator.

e Safety-critical routines should include “come from” checks to verify that they are being
called from a valid program, task, or routine.
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‘Safety must be an integral part of the system and software from the very start.|

Two basic types of activities are performed by the software organizations during the concept
stage: system review and planning. While the system is being defined, the software and safety
teams have an opportunity to help ensure that a safe and functional system is created. For the
purposes of this guidebook, the concept phase includes all activities that occur prior to the
development of software requirements. Developing the high-level system concept, project
planning, and determining system level requirements are all included.

The distribution of functionality from hardware to software is one area where software and safety
engineers should be involved. Because software is flexible (i.e., easy to change, especially at a
later date), it is tempting to implement functions in software rather than hardware. This may not
always be the best choice.

The questions below are meant to help the system engineer consider the consequences of
implementing functions in hardware or software. These questions should be considered a starting
point for deciding which requirements to allocate to software and which to hardware.

e For each requirement or function, where is the best place in the system to perform this
activity, and why? Should the functionality be in hardware, software, or a combination?
What are the benefits of the approach? What problems may occur as a result of the
approach?

e What will happen if a hardware or software safety component fails? What are the
backups, options, and plans for dealing with the failure? Does the outcome of a possible
failure indicate that any additional resources (hardware or software) are required?

e How confident are you in the estimates on time/budget to complete the task? For most
organizations, software estimates are usually inaccurate, as most projects come in late
and over budget.

e How much are things likely to change — that is, how much flexibility is needed by the

system?

e s there adequate hardware to support the software? Will the software have all the
information it needs to perform a safety-critical function? Sometimes extra hardware
(sensors, backup systems) is required for the software to do its job safely.

During the system concept phase, the software team is involved in the initial planning of the
software development effort. Several plans are produced, or at least started, at this stage. This is
the time to think about how you will be doing your job in the months ahead. Some plans
typically developed in the concept stage include:

e Software Management Plan
e Software Development Plan
e Software Assurance Plan

e Software Safety Plan
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e Software Verification and Validation Plan
e Software Acquisition Plan
e Software Configuration Management Plan.

A good plan has practical details on the process to be followed. Information will include not
just what will be done, but how it will be done. External procedures that give the explicit
steps may be referenced, or the steps may be given in the plan.

g

When developing the plans, think about issues that may affect safety, both now and in the
future. Consider the reliability of the system and software, and how that reliability may be
verified. Look at what can be done to improve the maintainability of the created software, so
that changes down the road will not create problems. Be creative. Up-front planning can
help prevent larger problems in the future. However, keep in mind that not everything can be
thought of at any one time. The project will evolve, so flexibility must also be “planned in.”

(I
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5.1

Tasks and Analyses

Although most project work during this phase is concentrated on the system level, software
developers and safety engineers have several tasks that must be initiated. These include the
creation of software documents and plans that will determine how, what, and when important

software products will be produced or activities will be conducted.

Table 5-1 System Concept Phase Tasks

Software Engineering Tasks

System and Software Safety
Tasks

Software Assurance or
IV&V Tasks

Provide input to project
concept and software concept
documents.

Create the Software Safety
Plan, including planning and
tailoring the safety effort. The
plan can be an independent
document or part of the system
Safety Plan.

Review project and software
concept documents.

Provide input to Software
Safety Plan.

Conduct Preliminary Hazard
Analysis (PHA) [Section
2.3.1].

Review Software Safety
Plan.

Plan the software management
and development processes

[Chapter 4].

Set up hazards tracking and
problem resolution process

Review Software
Management and
Development Plan.

Plan the configuration
management system [Section
4.5].

Prepare hazard verification
matrix.

Review Software
Configuration Management
Plan.

Plan the verification and
validation process.

Review PHA for safety-critical
software.

Review the Software
Verification and Validation
Plan.

Participate in “make or buy”
decisions for software.
Review software acquisition
(including COTS) [Section
12.1]. Provide input to
contracts for acquiring
software [Section 12.2].

Participate in “make or buy”
decisions for software. Review
software acquisition (including
COTS) [Section 12.1]. Provide
input to contracts for acquiring
software [Section 12.2].

Participate in “make or buy”
decisions for software.
Review software acquisition
(including COTS) [Section
12.1]. Provide input to
contracts for acquiring
software [Section 12.2].

Develop safety-critical
software tracking process.

Plan the software assurance
process.

Conduct Software Subsystem
Hazard Analysis [Section
2.3.4].
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5.2  Documentation and Milestones

The exact documents that a project will produce, and when they will be produced, are
determined during this Concept phase. Documentation should reflect the project size,
complexity, and criticality. Contractual obligations or required standards may also influence the
amount of documentation produced.

The following table lists documents that are commonly produced for the concept phase of
development:

Table 5-2 Project/Software Conception Documentation

Document Software Safety Section

System Safety Plan Include software as a subsystem: Identify tasks
(e.g. analyses, requirements tracing) and personnel.

Software Concepts Document Identify safety-critical processes.

Discuss coordination with systems safety tasks,
Software Management Plan flow-down incorporation of safety requirements
and applicability to safety-critical software.

Software Security Plan Determine security of safety-critical software.

Identify software risks, especially those related to

Risk Management Plan safety and reliability.

Identification and handling of safety-critical

Software Configuration Management Plan
components.

Discuss verification and validation of safety-

Software Verification and Validation Plan ..
critical components.

Identify quality assurance support to software
safety function, verification of software safety
requirements, and safety participation in software
reviews and inspections.

Software Quality Assurance Plan

Milestones that will usually occur during the concept phase include:
e Software Concept Review (SCR)

e Software Management Plan Review

At the end of a lifecycle activity or phase, it is important to verify that
* All system safety requirements have been satisfied by this lifecycle phase.
¢ No additional hazards have been introduced by the work done during this lifecycle phase.
IEEE 1228-1994
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5.3

Tailoring Guidelines

Ty
=

o

Section 3.2 Tailoring the Effort describés how to determine the software safety effort required
(full, moderate, or minimal).

Table 5-3 Software Safety Effort for Conception Phase

Technique or Analysis Safety Effort Level
MIN MOD FULL

2.3.1 Preliminary Hazard Analysis (PHA) F LS L
2.3.4 Software Subsystem Hazard Analysis o > >
6.5 Software Safety Requirements LS L F
6.5.7 Checklists and cross references vv vv *

Recommendation Codes

F Mandatory vV Highly Recommended

v Recommended S Not Recommended

5.4  Independent Verification and Validation % @ gl

For high value systems with high-risk software, an IV&V organization is usually involved to
oversee the software development. Verification & Validation (V&V) is a system engineering
process employing a variety of software engineering methods, techniques, and tools for
evaluating the correctness and quality of a software product throughout its life cycle. IV&V is
performed by an organization that is technically, managerially, and financially independent of
the development organization.

IV&V should supplement, not supersede, the in-house software quality/product assurance
efforts. Software QA and safety engineers should still be involved with the project from the
start, reviewing documents, offering advice and suggestions, and monitoring the software
development process. Depending on what is negotiated with the project manager, the IV&V
personnel may be a second set of eyes, shadowing the software QA engineers, conducting
independent audits, witnessing testing, or otherwise assisting the project team. This requires the
IV&V team to be stationed with the project, or to visit frequently. A more remote form of IV&V
involves reviewing the software products (plans, designs, code, test results, code review reports,
etc.), with a few in-person audits to verify the software development process. V&V analysts
usually conduct the more in-depth analyses and verifications of the software, rather than software
QA engineers.

When IV&V is used within a project, the exact functions and roles should be negotiated among
all the parties. Currently, the relationship of IV&V activities and personnel to project software
assurance activities and personnel within NASA is not clearly defined in software policy.
However, IV&V does not take the place of software QA, but rather should be an integrated
addition. IV&V does not replace the software safety role, either. The IV&V team may perform
some software safety activities, such as specific safety analyses. Even some software
engineering functions, such as requirements management, may be performed by the IV&V team.

The decision to use IV&V, and the level of IV&V required, should be made during the Concept
phase. IV&V may be required by your organization for all safety-critical software, or based on
the size and complexity of the project. For NASA, NPD 8730.4 provides the IV&V policy, and
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NPG 8730.x (draft) provides the criteria under which a project must use Independent
Verification and Validation or Independent Assessment.

— The NASA IV&V Facility in Fairmont, West Virginia (http:/www.ivv.nasa.gov), is an

% excellent resource for all NASA projects. The IV&V Facility provides tailored technical,
program management, and financial analyses for NASA programs, industry, and other
Government agencies, by applying software engineering "best practices" to evaluate the
correctness and quality of critical and complex software systems throughout the system
development life cycle.

5.5 Safety Analyses

Safety is an integral part of the software life-cycle, from the specification of safety-related
requirements, through inspection of the software controls, and into verification testing for
hazards. Within each life cycle phase, the safety engineer performs various analysis tasks. If
problems are found, they are fed back through the system until they are corrected or mitigated.
While finding unsafe elements of the system is often the focus of the analyses, a “negative”
analysis (no hazards or major problems) can give the project assurance that they are on the right
path to a safe system.

Analysis techniques fall into two categories:

1. Top down system hazards and failure analyses, which look at possible hazards or faults
and trace down into the design to find out what can cause them.

2. Bottom up review of design products to identify failure modes not predicted by top
down analysis. This analysis ensures the validity of assumptions of top down analysis,
and verifies conformance to requirements.

Typically, both types of analyses are used in a software safety analysis activity, though the
specific techniques used are tailored for the project. Results of software safety analysis are
reported back to the system safety organization for integration in the system safety plan.

As the software becomes more defined within the software life cycle, individual program sets,
modules, or units are identified that are safety-critical. The analyses used vary with the phase of
development, building on previous analyses or using the new level of software definition to
refine the safety analysis.

Chapters 6-10 describe various techniques that have been useful in NASA activities and within
industry. Tailoring by safety effort level is provided in the X.3 sections (X = the chapter
number). In addition, a benefit and cost rating is given for most techniques, to assist in the
planning of software safety activities. The ratings are subjective and meant to be only one
consideration when choosing analysis techniques.
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Chapter 6 Software Requirements % & O

The cost of correcting software faults and errors escalates dramatically as the development life
cycle progresses, making it important to correct errors and implement correct software
requirements from the very beginning. Unfortunately, it is generally impossible to eliminate all
errors.

Software developers must therefore work toward two goals:

1. To develop complete and correct requirements and correct code.

2. To develop fault-tolerant designs, which will detect and compensate for software faults.
Note that (2) is required because (1) is usually impossible.

This chapter of the guidebook describes developing and analyzing safety requirements for
software. The software safety requirements can be top-down (flowed down from system
requirements), bottom-up (derived from hazards analyses), or a combination of both. In some
organizations, top-down flow is the only permitted route for requirements into software. In those
cases, newly derived bottom-up safety requirements must be flowed back into the system
specification first.

The requirements of software components are typically expressed as functions with
corresponding inputs, processes, and outputs, plus additional requirements on interfaces, limits,
ranges, precision, accuracy, and performance. There may also be requirements on the data of the
program set, its attributes, relationships, and persistence, among others. The term “functions,” in
this case, does not mean software components, but a more general set of “things the software
system must do.” Management of requirements is a vital function and is discussed in Section
6.4.

Software safety requirements are derived from the system and subsystem safety requirements,
which were developed to mitigate hazards identified in the Preliminary, System, and Subsystems
Hazard Analyses (see Section 2.3.1 PHA and Section 2.3.4 Software Subsystem Hazard
Analysis). Additional requirements may be imposed by standards, organizational requirements,
and other sources. Good software safety techniques may be written into the requirements to
make sure the software development process includes these techniques or practices.

The software safety requirements should be included in the following documents:
e Software Requirements Document (SRD) or Software Specification (SS)
e Software Interface Specification (SIS) or Interface Control Document (ICD)

Safety-related requirements must be clearly identified in the SRD. This can be in a separate
section, or mixed with other requirements organized by function, system element, or other
approach. Safety requirements should also be clearly identified in the requirements and interface
documents, as well as any requirements traceability matrix.

An interface specification identifies, defines, and documents interface requirements internal to the
[sub]system in which software resides, and between system (including hardware and operator
interfaces), subsystem, and program set components and operation procedures. Note that the
interface information is sometimes effectively contained in the SRD, or within an Interface Control
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Document (ICD) which defines all system interfaces, including hardware to hardware, hardware to
software, and software to software.

6.1

Tasks and Analyses

Table 6-1 Software Requirements Tasks

Software Engineering Tasks

System and Software Safety
Tasks

Software Assurance or
IV&V Tasks

Software requirements
development [Sections 6.4.2
and 6.5]

Development of software
safety requirements [Section
6.5]

Formal methods for
verification [Sections 4.2.2.3
and 6.6.4]

Requirements management

[Section 6.4]

Safety Requirements Flow-
down Analysis [Section 6.6.1]

Model checking [Section
6.6.5]

Formal methods for
specification [Sections 4.2.2.3
and 6.6.4]

Requirements Criticality
Analysis [Section 6.6.2]

Formal inspections of
software requirements
[Section 6.5.5]

Formal inspections of
software requirements
[Section 6.5.5]

Specification Analysis of
Safety-critical Requirements
[Section 6.6.3]

Specification analysis [Section
6.6.3]

System test planning [Section
6.5.6]

Software Fault Tree Analysis
[Section 6.6.7 and Appendix
C]

Timing, throughput and sizing
analysis [Section 6.6.6]

Timing, throughput and sizing
considerations [Section 6.5.4]

Software Failure Modes and
Effects Analysis [Section
6.6.8 and Appendix D]

Formal inspections of
Software requirements
[Section 6.5.5]

Develop Safety Package for
Phase 0/1 Safety Review or
other external safety review.
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6.2 Documentation and Milestones

Table 6-2 Software Requirements Documentation

Document

Software Safety Section

Software Requirements Document

Identification of all safety-critical software
requirements

Software Interface Specification

Identification of any interfaces that are part of safety-
critical elements

Formal Inspection of Requirements
Report

Identification of any safety-critical requirements
defects that are considered major (must be fixed).

Requirements Traceability Matrix

Special identification given to safety-critical
requirements

Analysis Reports

Identification of any safety-related aspects or safety
concerns.

Acceptance Test Plan

This is the customer acceptance test. Includes all
safety testing necessary to assure the customer that the
system is safe.

System Test Plan

Includes stress, load, disaster, stability, and other tests,
as well as functional testing. Verifies that the system
cannot go into an unsafe mode under adverse
conditions.

Milestones that will usually occur during this phase include:

e Software Requirements Review (SRR)

e Phase 0/1 Safety Review or other carrier- or program-specific safety review
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6.3 Tailoring Guidelines b 4

See Section 3.2 Tailoring the Effort for how to determine the software safety effort required

(full, moderate, or minimal).

Table 6-3 Software Safety Effort for Requirements Phase

Technique or Analysis Safety Effort Level
MIN MOD FULL
M Preliminary Hazard Analysis (PHA) (if not e e e
previously performed)
M Software Subsystem Hazard Analysis (if not e e *
previously performed)
Software safety requirements development
6.5.1 Generic requirements v v v
6.5.2 Fault and Failure Tolerance v vv Y
6.5.3 Hazardous Commands * * Y
6.4 Requirements Management LS LS LS
6.5.5 Formal Inspections v Y F
6.6.1 ngtware Safety Requirements Flow-down Vv e e
Analysis
6.6.2 Requirements Criticality Analysis v vV *
6.6.3 Specification Analysis N v vv
v vv
4.2.2.3 and 6.6.4 Formal Methods o . (Specification &
(Specification) . .
Verification)

6.6.5 Model Checking vv vv
Timing, Throughput, and Sizing
6.5.4 Development Considerations v ¢ *
6.6.6 Analysis vv ¥ ¥
6.6.7 Software Fault Tree Analysis v vv F
6.6.8 Software Failure Modes and Effects Analysis ‘N vv

Recommendation Codes

F Mandatory vV Highly Recommended

v Recommended S Not Recommended
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6.4 Requirements Management T ok

Requirements management is the process of eliciting, documenting, organizing, communicating,
and tracking requirements. Management of requirements is one of the most important activities
you can do to assure a safe system. Deficient requirements are the single largest cause of
software project failure, and usually are the root cause of the worst software defects.

Requirements management is also referred to as requirements engineering. It is a set of
processes relating to requirements, from gathering them to assuring that that they have all been
verified. The aspects of gathering and documenting requirements is outside the scope of this
guidebook. The process of specifying software safety requirements is covered in Sections 6.5.1
through 6.5.3. The process of verifying that all appropriate safety requirements have been
identified is described in Section 6.6.1.

The advantages of following a requirements management process include:

e Improve understanding and communications. During the process of requirements
elicitation, and the refinement into a specification, software development team members
obtain a clearer understanding of the system to be delivered. The software development
team should involve the customers in the process, so that the final system will meet the
customers’ needs. A central repository of information obtained through the process
provides a common knowledge base for the user community, management, analysts,
developers, and test personnel.

e Prevention of requirements creep or scope change. Requirements management works
to prevent (or at least expose to management attention) requirements creep and scope
changes by identifying and tracking changes to the requirements. Trending analyses can
also be performed to look for project areas subject to frequent or critical requirements
changes. Control of these issues can be through the project’s risk management system or
through another designated process.

e Improved quality and end-user satisfaction. Higher quality results when customers,
developers, analysts, and assurance personnel have a common understanding of what
must be delivered.

¢ Reduced project costs and delays. Research shows that requirements errors are
pervasive and expensive to fix. Reducing the number of these errors early in the
development cycle lowers the total number of errors, lowers project costs, and maintains
the projected schedule.

e Compliance with standards or contracts. Requirements management is a “best
practice.” Following this process can help meet regulatory or contractual obligations,
such as obtaining a specific Software CMM level (see section 4.3.8). Managing the
project requirements will also help if you must present a “safety case” to a regulatory
body. (A safety case is a documented body of evidence that provides a demonstrable
and valid argument that a system is adequately safe for a given application and
environment over its lifetime. Safety cases are required by the FAA.)
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6.4.1 Requirements Specification

Determining what your project’s requirements are is not necessarily an easy process. The first
step is to realize that there are different types of requirements.

Some basic types of requirements are:

e Business requirements. These describe why the product is being built and identify the
benefits that both customers and the business will reap. [98]

e User requirements. These detail the tasks a user will be able to perform with the
product and are often captured in the form of use cases. [98]

¢ Functional requirements. These identify the specific system behaviors that must be
implemented. The functional requirements are the traditional "shall" statements found in
a software requirements specification. [98]

¢ Quality requirements. Performance, efficiency, system availability, reliability,
robustness, usability, flexibility, maintainability, portability, and reusability are all quality
areas that should be considered.

o Safety requirements. Safety requirements development is discussed in section 6.5.

6.4.1.1 Requirements Elicitation

Requirements elicitation involves querying the customer, potential users or operators, domain
experts, and others (i.e. the stakeholders) to determine a set of features, functions, or activities
that must be included in the system. This is the time to be broad and inclusive. Requirements
can be combined or removed later in the process. Requirements elicitation is the most difficult of
the requirements management activities because you are creating something from nothing.

Some techniques that can be used include: [97]

e Structured interviews. These can be highly effective in collecting requirements from
experts and prospective users.

¢ Brainstorming. This is a structured yet creative technique for eliciting ideas, capturing
them, and then subjecting them to objective criteria for evaluation.

e Domain environment. Placing engineers and designers in the environment where the
device will be used, even for a day, is a quick way to learn about potential problems and
issues.

e Structured workshops. Workshops are managed by trained facilitators and include as
many stakeholders as possible. Joint Application Development (JAD) [99] is a structured
process that uses workshops to elicit requirements.

One necessary step in the elicitation process is to record the requirements. This can be done in a
word processor, spreadsheet, or other office tool. It can also be done in a requirements
management tool. A list of requirements management tools is given in Table 6-4.
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6.4.1.2 Requirements Refinement

The mass of requirements that result from the elicitation needs to be refined into a manageable
set. Some requirements will be deemed unnecessary, others may be combined, and many more
will need to be clarified. Priorities should be applied to the requirements at this stage, to separate
the “must have” requirements from those that are desired.

Requirements often start as an abstraction, such as "The spacecraft will have a color camera."
As the process continues, the requirements become more specific, diverge, recombine in new
ways, and eventually emerge as a set of detailed requirements such as, "The camera will weigh
less than 12 ounces," and "The camera will be able to take 30 pictures a second with a frame size

of 800 by 600 pixels." [97]
Good requirements have the following attributes:

e Unambiguous. If a requirement has multiple interpretations, what is built may not match
what the user wanted.

e Complete. It is impossible to know all of a system's future requirements, but all of the
known ones should be specified.

e Consistent. Requirements must not conflict with each other.
e Traceable. The source of each requirement should be identified.

e Verifiable. Each requirement must be able to be verified, usually by test, analysis,
inspection, or demonstration.

Requirements can be very detailed, as long as they address external behaviors (as viewed by
users or by interfacing systems). They become design information, however, once they specify
the existence of particular subcomponents or algorithms.

Requirements specifications can include auxiliary information that is not a requirement. Such
information may include introductory text, summary statements, tables, and glossaries. The real
requirements should be clearly identified.

“Any project with resource limitations must establish the relative priorities of the requested
features, use cases, or functional requirements. Prioritization helps the project manager plan for
staged releases, make trade-off decisions, and respond to requests for adding more functionality.
It can also help you avoid the traumatic ‘rapid descoping phase’ late in the project, when you
start throwing features overboard to get a product out the door on time.” [98]

6.4.1.3 Requirements Documentation

The final result of the elicitation and refinement activities is a software requirements
specification or similar document. This document defines not only the complete external
behaviors of the software system to be built, but also its non-behavioral requirements. The
format of the document may be defined by a standard or company template. The SRS is most
often written in natural language, perhaps augmented by appropriate analysis models. It can also
be written in a formal specification language (see Section 4.2.2.3).

NASA-GB-8719.13 110



Requirements must have a way to be verified. This verification method should be
included in the software requirements document, either when the requirement is stated or
in a separate verification matrix at the end of the document. Verification methods
include test (exercising the software), inspection (software review or formal inspection),
analysis, or demonstration (simply running the software). Test is usually the preferred
verification, but other methods may be much easier for some requirements or testing may
not be feasible. Software assurance engineers and software safety engineers should
concur with the verification method.

The software requirements need to be reviewed by all stakeholders and other interested
parties. Reviews help find ambiguous, conflicting, or incomplete requirements. They
also bring the team “up to speed” on the system and the software subsystem. Reviews
can be formal inspections, informal assessments, or formal project reviews. Formal
inspection (Section 6.5.5) is a valuable tool in finding requirements defects (e.g.,
ambiguity, conflicting requirements, missing requirements) and is highly recommended.

Requirements management tools (Table 6-4) store the project requirements and related
information in a multi-user database. These products let you manipulate the database contents,
import and export requirements, and connect requirements to objects stored in testing, design,
and project management tools. You can define attributes for each requirement, such as its
version number, author, status, origin or rationale, allocated release, and priority. Traceability
links between individual requirements and other system elements help you evaluate the impact of
changing or deleting a requirement. Web access permits real-time sharing of database updates
with members of geographically distributed teams.

Table 6-4 Requirements Management Tools

Tool Vendor

Caliber-RM Borland http://www.borland.com/caliber/

DOORS Telelogic http://www.telelogic.com/

RequisitePro Rational Software Corporation; http://www.rational.com/

RTM Workshop Integrated Chipware, Inc.; http://www.chipware.com/

Vital Link Compliance Automation, Inc. http:// www.complianceautomation.com/

6.4.2 Requirements Traceability and Verification

Traceability is a link or definable relationship between two entities. Requirements are linked
from their more general form (e.g., the system specification) to their more concrete form (e.g.,
subsystem specifications). They are also linked forward to the design, source code, and test
cases. This is important for all requirements, especially those that are safety-critical. Knowing
what part of the code implements the safety function, or what test verifies that function, is a vital
part of creating a safe system.

The key benefits of tracing requirements include:

e Verification that all user needs are implemented and adequately tested. Full requirements
test coverage is virtually impossible without some form of requirements traceability.

e Verification that there are no "extra" system behaviors that cannot be traced to a user
requirement.
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¢ Improved understanding of the impact of changing requirements.

Requirements verification involves evaluating the correctness and completeness of the
requirements, to ensure that a system built to those requirements will satisfy the users’ needs and
expectations. The goal of verification is to ensure that the requirements provide an adequate
basis to proceed with design, construction, and testing. As mentioned in 6.4.1.3, formal
inspection is an excellent way to verify the requirements. Analyses may also be used, such as
those described in section 6.6.

A traceability matrix is one tool that can help detail how the requirements trace through the
design, source code, and test products. The matrix can be manually created and maintained, or
may be a by-product of a requirements management tool. The manual method can be tedious
and difficult to maintain.

6.4.3 Requirements Change Management

Requirements traceability provides a methodical and controlled process for managing changes
that inevitably occur as a system is developed and deployed. “Without traceability, every change
would require project team members to review all documents on an ad hoc basis in order to
determine what other elements of the project, if any, require updating. Because such a process
would make it difficult to establish whether all affected components have been identified over
time, changes to the system would tend to decrease its reliability and safety.” [1] With
traceability, when a change occurs the affected products (documentation, source code, test cases)
can be quickly identified.

The actual process of making changes should be a structured, defined process. This process
should describe how a proposed change is submitted, evaluated, decided upon, and incorporated
into the requirements baseline. Usually a change control board, consisting of people from
various disciplines and perspectives, will review potential changes and either approve or reject
them. A requirements management tool can help manage the changes made to many individual
requirements, maintain revision histories, and communicate changes to those affected by them.

Part of the change management process should be an evaluation of the impact the change will
have on the system and other requirements. Traceability information is an important tool in this
evaluation. Further information on analysis that can be done to determine the impact of software
changes can be found in Section 10.5.2.
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6.5 Development of Software Safety Requirements g - O

Software safety requirements are obtained from various sources (see Figure 4-7), and are usually
sorted into two categories: generic and specific.

The generic software safety requirements are derived from sets of requirements that can be used
in different programs and environments to solve common software safety problems. Examples
of generic software safety requirements and their sources are given in Section 6.5.1 Generic
Software Safety Requirements. Specific software safety requirements are system-unique
functional capabilities or constraints that are identified in the following three ways. For
complete identification of all software safety requirements, all three methods should be used.

Method 1  Through top- down analysis of system design requirements and specifications:

The system requirements may identify system hazards upfront and specify which
system functions are safety-critical, or a Fault Tree Analysis may be completed to
identify safety-critical functions. The software safety organization participates or
leads the mapping of these requirements to software.

Method 2 From the Preliminary Hazard Analysis (PHA):

PHA looks down into the system from the point of view of system hazards.
Preliminary hazard causes are mapped to, or interact with, software. Software
hazard control features are identified and specified as requirements.

Method 3  Through bottom-up analysis of design data, (e.g., flow diagrams, Failure Mode
Effects and Criticality Analysis (FMECA)).

Design implementations allowed but not anticipated by the system requirements
are analyzed and new hazard causes or contributors are identified. Software
hazard controls are specified via requirements when the hazard causes are linked
to or interact with software.

6.5.1 Generic Software Safety Requirements

Similar processors, platforms, and/or software can suffer from similar or identical problems.
Generic software safety requirements are derived from sets of requirements and best practices
used in different programs and environments to solve common software safety problems.
Generic software safety requirements capture these lessons learned and provide a valuable
resource for developers.

Generic requirements prevent costly duplication of effort by taking advantage of existing proven
techniques and lessons learned rather than reinventing techniques or repeating mistakes. Most
development programs should be able to make use of some generic requirements. However,
these requirements should be used with care and may have to be tailored from project to project.

As technology evolves, or as new applications are implemented, new "generic" requirements will
likely arise, and other sources of generic requirements might become available. A partial listing
of sources for generic requirement is shown below:

1. NSTS 19943, Command Requirements and Guidelines for NSTS Customers.
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2. STANAG 4404 (Draft), NATO Standardization Agreement (STANAG) Safety Design
Requirements and Guidelines for Munition Related Safety-Critical Computing Systems.

3. EWRR 127-1, Range Safety Requirements - Western Space and Missile Center,
Attachment-3, Software System Design Requirements. See Section 3.16 Safety-
Critical Computing System Software Design Requirements.

4. AFISC SSH 1-1, System Safety Handbook - Software System Safety, Headquarters Air
Force Inspection and Safety Center.

5. EIA Bulletin SEB6, A System Safety Engineering in Software Development
(Electrical Industries Association).

6. Underwriters Laboratory - UL 1998, Standard for Safety - Safety-Related Software,
January 4th, 1994.

7. NUREG/CR-6263 MTR 94W0000114, High Integrity Software for Nuclear Power
Plants, The MITRE Corporation, for the U.S. Nuclear Regulatory Commission.

Appendix H has a checklist of generic software safety requirements developed by the Marshall
Space Flight Center.

Benefit Rating for Use of Generic Requirements: HIGH

6.5.2 Fault and Failure Tolerance & O

Most NASA space systems employ failure tolerance (as opposed to fault tolerance) to achieve an
acceptable degree of safety. This is primarily achieved via hardware, but software is also
important, because improper software design can defeat the hardware failure tolerance and vice
versa. While the actual implementation of fault or failure tolerance is a design issue, the
question of whether it is necessary, or to what extent it is necessary, must be captured in software
requirements.

While not all faults lead to a failure, every failure results from one or more faults. A fault is an
error that does not affect the functionality of the system, such as bad data from either input,
calculations, or output, an unknown command, or a command or data coming at an unknown
time. If properly designed, the software, or system, can respond to errors by detecting and
correcting them intelligently. This would include checking input and output data by doing limit
checking and setting the value to a known safe value, or requesting and/or waiting for the next
data point.

Occasional bad I/0, data, or commands should not be considered failures, unless there are too
many of them and the system cannot handle them. One or more intelligent fault collection
routines should be part of the program to track, and possibly log, the